function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =9; end % There are a total of 7 entries in each of the rate and state variable arrays. % There are a total of 35 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('IP3 in component IP3_dynamics (micromolar)'); LEGEND_ALGEBRAIC(:,1) = strpad('j_IP3 in component IP3_dynamics (micromolar_micrometre_per_second)'); LEGEND_CONSTANTS(:,1) = strpad('J_IP3 in component IP3_dynamics (micromolar_micrometre_per_second)'); LEGEND_CONSTANTS(:,2) = strpad('k_0 in component IP3_dynamics (first_order_rate_constant)'); LEGEND_CONSTANTS(:,3) = strpad('k_degr in component IP3_dynamics (first_order_rate_constant)'); LEGEND_CONSTANTS(:,4) = strpad('IP3_0 in component IP3_dynamics (micromolar)'); LEGEND_CONSTANTS(:,5) = strpad('Ca_ER in component ER (micromolar)'); LEGEND_STATES(:,2) = strpad('Ca in component Calcium_dynamics (micromolar)'); LEGEND_CONSTANTS(:,6) = strpad('alpha in component Calcium_dynamics (dimensionless)'); LEGEND_ALGEBRAIC(:,2) = strpad('J_channel in component Channel_kinetics (flux)'); LEGEND_ALGEBRAIC(:,8) = strpad('J_pump in component SERCA_pump_kinetics (flux)'); LEGEND_ALGEBRAIC(:,9) = strpad('J_leak in component Leak (flux)'); LEGEND_CONSTANTS(:,28) = strpad('R_buffering in component Calcium_buffering (flux)'); LEGEND_CONSTANTS(:,7) = strpad('J_max in component Channel_kinetics (flux)'); LEGEND_STATES(:,3) = strpad('h in component Channel_kinetics (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('K_act in component Channel_kinetics (micromolar)'); LEGEND_CONSTANTS(:,9) = strpad('K_IP3 in component Channel_kinetics (micromolar)'); LEGEND_CONSTANTS(:,10) = strpad('K_inh in component Channel_kinetics (micromolar)'); LEGEND_CONSTANTS(:,11) = strpad('k_on in component Channel_kinetics (second_order_rate_constant)'); LEGEND_CONSTANTS(:,12) = strpad('V_max in component SERCA_pump_kinetics (flux)'); LEGEND_CONSTANTS(:,13) = strpad('K_p in component SERCA_pump_kinetics (micromolar)'); LEGEND_CONSTANTS(:,14) = strpad('L in component Leak (flux)'); LEGEND_CONSTANTS(:,15) = strpad('R1 in component Calcium_buffering (flux)'); LEGEND_CONSTANTS(:,16) = strpad('R2 in component Calcium_buffering (flux)'); LEGEND_STATES(:,4) = strpad('B1 in component Calcium_buffering (micromolar)'); LEGEND_STATES(:,5) = strpad('B2 in component Calcium_buffering (micromolar)'); LEGEND_STATES(:,6) = strpad('CaB1 in component Calcium_buffering (micromolar)'); LEGEND_STATES(:,7) = strpad('CaB2 in component Calcium_buffering (micromolar)'); LEGEND_ALGEBRAIC(:,3) = strpad('k1_on in component Calcium_buffering (second_order_rate_constant)'); LEGEND_ALGEBRAIC(:,4) = strpad('k1_off in component Calcium_buffering (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,5) = strpad('k2_on in component Calcium_buffering (second_order_rate_constant)'); LEGEND_ALGEBRAIC(:,6) = strpad('k2_off in component Calcium_buffering (first_order_rate_constant)'); LEGEND_CONSTANTS(:,17) = strpad('K1 in component Calcium_buffering (micromolar)'); LEGEND_CONSTANTS(:,18) = strpad('K2 in component Calcium_buffering (micromolar)'); LEGEND_CONSTANTS(:,19) = strpad('soma_or_neurite in component Plasma_membrane_extrusion_mechanisms (dimensionless)'); LEGEND_ALGEBRAIC(:,7) = strpad('j_Ca in component Plasma_membrane_extrusion_mechanisms (micromolar_micrometre_per_second)'); LEGEND_CONSTANTS(:,20) = strpad('gamma_0 in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)'); LEGEND_CONSTANTS(:,31) = strpad('gamma in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)'); LEGEND_CONSTANTS(:,29) = strpad('gamma_s in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)'); LEGEND_CONSTANTS(:,30) = strpad('gamma_n in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)'); LEGEND_CONSTANTS(:,21) = strpad('delta in component Plasma_membrane_extrusion_mechanisms (dimensionless)'); LEGEND_CONSTANTS(:,22) = strpad('sigma in component Plasma_membrane_extrusion_mechanisms (per_micrometre)'); LEGEND_CONSTANTS(:,23) = strpad('w_n in component Plasma_membrane_extrusion_mechanisms (dimensionless)'); LEGEND_CONSTANTS(:,24) = strpad('w_s in component Plasma_membrane_extrusion_mechanisms (dimensionless)'); LEGEND_CONSTANTS(:,25) = strpad('sigma_soma_2D in component Plasma_membrane_extrusion_mechanisms (per_micrometre)'); LEGEND_CONSTANTS(:,26) = strpad('sigma_neurite_2D in component Plasma_membrane_extrusion_mechanisms (per_micrometre)'); LEGEND_CONSTANTS(:,27) = strpad('Ca_c in component Plasma_membrane_extrusion_mechanisms (micromolar)'); LEGEND_RATES(:,1) = strpad('d/dt IP3 in component IP3_dynamics (micromolar)'); LEGEND_RATES(:,2) = strpad('d/dt Ca in component Calcium_dynamics (micromolar)'); LEGEND_RATES(:,3) = strpad('d/dt h in component Channel_kinetics (dimensionless)'); LEGEND_RATES(:,4) = strpad('d/dt B1 in component Calcium_buffering (micromolar)'); LEGEND_RATES(:,6) = strpad('d/dt CaB1 in component Calcium_buffering (micromolar)'); LEGEND_RATES(:,5) = strpad('d/dt B2 in component Calcium_buffering (micromolar)'); LEGEND_RATES(:,7) = strpad('d/dt CaB2 in component Calcium_buffering (micromolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 3.0; CONSTANTS(:,1) = 20.86; CONSTANTS(:,2) = 1.188; CONSTANTS(:,3) = 0.14; CONSTANTS(:,4) = 0.16; CONSTANTS(:,5) = 400.0; STATES(:,2) = 0.05; CONSTANTS(:,6) = 0.0; CONSTANTS(:,7) = 3500.0; STATES(:,3) = 0.8; CONSTANTS(:,8) = 0.3; CONSTANTS(:,9) = 0.8; CONSTANTS(:,10) = 0.2; CONSTANTS(:,11) = 2.7; CONSTANTS(:,12) = 3.75; CONSTANTS(:,13) = 0.27; CONSTANTS(:,14) = 0.1; CONSTANTS(:,15) = 0.1; CONSTANTS(:,16) = 0.1; STATES(:,4) = 450.0; STATES(:,5) = 75.0; STATES(:,6) = 0; STATES(:,7) = 0; CONSTANTS(:,17) = 10.0; CONSTANTS(:,18) = 0.24; CONSTANTS(:,19) = -1; CONSTANTS(:,20) = 8.0; CONSTANTS(:,21) = 1.45; CONSTANTS(:,22) = 0.263; CONSTANTS(:,23) = 0.377; CONSTANTS(:,24) = 0.623; CONSTANTS(:,25) = 0.132; CONSTANTS(:,26) = 0.479; CONSTANTS(:,27) = 0.2; CONSTANTS(:,28) = CONSTANTS(:,15)+CONSTANTS(:,16); CONSTANTS(:,29) = ( CONSTANTS(:,20).*CONSTANTS(:,22))./( CONSTANTS(:,21).*CONSTANTS(:,26).*CONSTANTS(:,23)+ CONSTANTS(:,25).*CONSTANTS(:,24)); CONSTANTS(:,31) = CONSTANTS(:,15); CONSTANTS(:,32) = - CONSTANTS(:,15); CONSTANTS(:,33) = CONSTANTS(:,16); CONSTANTS(:,34) = - CONSTANTS(:,16); CONSTANTS(:,30) = ( CONSTANTS(:,20).*CONSTANTS(:,22).*CONSTANTS(:,21))./( CONSTANTS(:,21).*CONSTANTS(:,26).*CONSTANTS(:,23)+ CONSTANTS(:,25).*CONSTANTS(:,24)); CONSTANTS(:,31) = piecewise({CONSTANTS(:,19)<=0.00000, CONSTANTS(:,29) }, CONSTANTS(:,30)); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,4) = CONSTANTS(:,31); RATES(:,6) = CONSTANTS(:,32); RATES(:,5) = CONSTANTS(:,33); RATES(:,7) = CONSTANTS(:,34); RATES(:,1) = - ( CONSTANTS(:,3).*(STATES(:,1) - CONSTANTS(:,4))); RATES(:,3) = CONSTANTS(:,11).*(CONSTANTS(:,10) - STATES(:,3).*(STATES(:,2)+CONSTANTS(:,10))); ALGEBRAIC(:,2) = CONSTANTS(:,7).*power( (STATES(:,1)./(STATES(:,1)+CONSTANTS(:,9))).*(STATES(:,2)./(STATES(:,2)+CONSTANTS(:,8))).*STATES(:,3), 3.00000).*(1.00000 - STATES(:,2)./CONSTANTS(:,5)); ALGEBRAIC(:,8) = CONSTANTS(:,12).*(power(STATES(:,2), 2.00000)./(power(STATES(:,2), 2.00000)+power(CONSTANTS(:,13), 2.00000))); ALGEBRAIC(:,9) = CONSTANTS(:,14).*(1.00000 - STATES(:,2)./CONSTANTS(:,5)); RATES(:,2) = CONSTANTS(:,6).*(ALGEBRAIC(:,2)+ - ALGEBRAIC(:,8)+ALGEBRAIC(:,9))+CONSTANTS(:,28); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = CONSTANTS(:,7).*power( (STATES(:,1)./(STATES(:,1)+CONSTANTS(:,9))).*(STATES(:,2)./(STATES(:,2)+CONSTANTS(:,8))).*STATES(:,3), 3.00000).*(1.00000 - STATES(:,2)./CONSTANTS(:,5)); ALGEBRAIC(:,8) = CONSTANTS(:,12).*(power(STATES(:,2), 2.00000)./(power(STATES(:,2), 2.00000)+power(CONSTANTS(:,13), 2.00000))); ALGEBRAIC(:,9) = CONSTANTS(:,14).*(1.00000 - STATES(:,2)./CONSTANTS(:,5)); ALGEBRAIC(:,1) = CONSTANTS(:,1).*exp( - CONSTANTS(:,2).*VOI); [CONSTANTS, STATES, ALGEBRAIC] = rootfind_0(VOI, CONSTANTS, STATES, ALGEBRAIC); [CONSTANTS, STATES, ALGEBRAIC] = rootfind_1(VOI, CONSTANTS, STATES, ALGEBRAIC); ALGEBRAIC(:,7) = piecewise({STATES(:,2)>CONSTANTS(:,27), CONSTANTS(:,31).*(STATES(:,2) - CONSTANTS(:,27)) }, 0.00000); end % Functions required for solving differential algebraic equation function [CONSTANTS, STATES, ALGEBRAIC] = rootfind_0(VOI, CONSTANTS_IN, STATES_IN, ALGEBRAIC_IN) ALGEBRAIC = ALGEBRAIC_IN; CONSTANTS = CONSTANTS_IN; STATES = STATES_IN; global initialGuess_0; if (length(initialGuess_0) ~= 2), initialGuess_0 = [0.1,0.1];, end options = optimset('Display', 'off', 'TolX', 1E-6); if length(VOI) == 1 residualfn = @(algebraicCandidate)residualSN_0(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES); soln = fsolve(residualfn, initialGuess_0, options); initialGuess_0 = soln; ALGEBRAIC(:,3) = soln(1); ALGEBRAIC(:,4) = soln(2); else SET_ALGEBRAIC(:,3) = logical(1); SET_ALGEBRAIC(:,4) = logical(1); for i=1:length(VOI) residualfn = @(algebraicCandidate)residualSN_0(algebraicCandidate, ALGEBRAIC(i,:), VOI(i), CONSTANTS, STATES(i,:)); soln = fsolve(residualfn, initialGuess_0, options); initialGuess_0 = soln; TEMP_ALGEBRAIC(:,3) = soln(1); TEMP_ALGEBRAIC(:,4) = soln(2); ALGEBRAIC(i,SET_ALGEBRAIC) = TEMP_ALGEBRAIC(SET_ALGEBRAIC); end end end function resid = residualSN_0(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES) ALGEBRAIC(:,3) = algebraicCandidate(1); ALGEBRAIC(:,4) = algebraicCandidate(2); resid(1) = CONSTANTS(:,15) - ( - ( ALGEBRAIC(:,3).*STATES(:,2).*STATES(:,4))+ ALGEBRAIC(:,4).*STATES(:,6)); resid(2) = CONSTANTS(:,17) - ALGEBRAIC(:,4)./ALGEBRAIC(:,3); end % Functions required for solving differential algebraic equation function [CONSTANTS, STATES, ALGEBRAIC] = rootfind_1(VOI, CONSTANTS_IN, STATES_IN, ALGEBRAIC_IN) ALGEBRAIC = ALGEBRAIC_IN; CONSTANTS = CONSTANTS_IN; STATES = STATES_IN; global initialGuess_1; if (length(initialGuess_1) ~= 2), initialGuess_1 = [0.1,0.1];, end options = optimset('Display', 'off', 'TolX', 1E-6); if length(VOI) == 1 residualfn = @(algebraicCandidate)residualSN_1(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES); soln = fsolve(residualfn, initialGuess_1, options); initialGuess_1 = soln; ALGEBRAIC(:,5) = soln(1); ALGEBRAIC(:,6) = soln(2); else SET_ALGEBRAIC(:,5) = logical(1); SET_ALGEBRAIC(:,6) = logical(1); for i=1:length(VOI) residualfn = @(algebraicCandidate)residualSN_1(algebraicCandidate, ALGEBRAIC(i,:), VOI(i), CONSTANTS, STATES(i,:)); soln = fsolve(residualfn, initialGuess_1, options); initialGuess_1 = soln; TEMP_ALGEBRAIC(:,5) = soln(1); TEMP_ALGEBRAIC(:,6) = soln(2); ALGEBRAIC(i,SET_ALGEBRAIC) = TEMP_ALGEBRAIC(SET_ALGEBRAIC); end end end function resid = residualSN_1(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES) ALGEBRAIC(:,5) = algebraicCandidate(1); ALGEBRAIC(:,6) = algebraicCandidate(2); resid(1) = CONSTANTS(:,16) - ( - ( ALGEBRAIC(:,5).*STATES(:,2).*STATES(:,5))+ ALGEBRAIC(:,6).*STATES(:,7)); resid(2) = CONSTANTS(:,18) - ALGEBRAIC(:,6)./ALGEBRAIC(:,5); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end