# Size of variable arrays: sizeAlgebraic = 0 sizeStates = 16 sizeConstants = 55 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (hour)" legend_states[0] = "MP in component MP (nanomolar)" legend_constants[46] = "vsP in component MP (flux)" legend_constants[0] = "vmP in component MP (flux)" legend_constants[1] = "kdmp in component MP (first_order_rate_constant)" legend_constants[2] = "KAP in component MP (nanomolar)" legend_constants[3] = "KmP in component MP (nanomolar)" legend_constants[4] = "vstot in component model_parameters (flux)" legend_constants[5] = "n in component model_parameters (dimensionless)" legend_states[1] = "BN in component BN (nanomolar)" legend_states[2] = "MC in component MC (nanomolar)" legend_constants[47] = "vsC in component MC (flux)" legend_constants[6] = "vmC in component MC (flux)" legend_constants[7] = "kdmc in component MC (first_order_rate_constant)" legend_constants[8] = "KAC in component MC (nanomolar)" legend_constants[9] = "KmC in component MC (nanomolar)" legend_states[3] = "MB in component MB (nanomolar)" legend_constants[48] = "vsB in component MB (flux)" legend_constants[10] = "vmB in component MB (flux)" legend_constants[11] = "kdmb in component MB (first_order_rate_constant)" legend_constants[12] = "KIB in component MB (nanomolar)" legend_constants[13] = "KmB in component MB (nanomolar)" legend_constants[14] = "m in component model_parameters (dimensionless)" legend_states[4] = "PC in component PC (nanomolar)" legend_constants[49] = "ksP in component model_parameters (first_order_rate_constant)" legend_constants[15] = "Kp in component model_parameters (nanomolar)" legend_constants[16] = "Kdp in component model_parameters (nanomolar)" legend_constants[17] = "k3 in component model_parameters (second_order_rate_constant)" legend_constants[18] = "k4 in component model_parameters (first_order_rate_constant)" legend_constants[19] = "kdn in component model_parameters (first_order_rate_constant)" legend_constants[50] = "V1P in component model_parameters (flux)" legend_constants[20] = "V2P in component model_parameters (flux)" legend_states[5] = "PCP in component PCP (nanomolar)" legend_states[6] = "PCC in component PCC (nanomolar)" legend_states[7] = "CC in component CC (nanomolar)" legend_constants[51] = "ksC in component model_parameters (first_order_rate_constant)" legend_constants[21] = "kdnc in component model_parameters (first_order_rate_constant)" legend_constants[22] = "V1C in component model_parameters (flux)" legend_constants[23] = "V2C in component model_parameters (flux)" legend_states[8] = "CCP in component CCP (nanomolar)" legend_constants[24] = "vdPC in component model_parameters (flux)" legend_constants[25] = "Kd in component model_parameters (nanomolar)" legend_constants[26] = "vdCC in component model_parameters (flux)" legend_constants[27] = "k1 in component model_parameters (first_order_rate_constant)" legend_constants[28] = "k2 in component model_parameters (first_order_rate_constant)" legend_constants[52] = "V1PC in component model_parameters (flux)" legend_constants[29] = "V2PC in component model_parameters (flux)" legend_states[9] = "PCCP in component PCCP (nanomolar)" legend_states[10] = "PCN in component PCN (nanomolar)" legend_constants[30] = "k7 in component model_parameters (second_order_rate_constant)" legend_constants[31] = "k8 in component model_parameters (first_order_rate_constant)" legend_constants[53] = "V3PC in component model_parameters (flux)" legend_constants[32] = "V4PC in component model_parameters (flux)" legend_states[11] = "PCNP in component PCNP (nanomolar)" legend_states[12] = "IN in component IN (nanomolar)" legend_constants[33] = "vdPCC in component model_parameters (flux)" legend_constants[34] = "vdPCN in component model_parameters (flux)" legend_states[13] = "BC in component BC (nanomolar)" legend_constants[54] = "ksB in component model_parameters (first_order_rate_constant)" legend_constants[35] = "k5 in component model_parameters (first_order_rate_constant)" legend_constants[36] = "k6 in component model_parameters (first_order_rate_constant)" legend_constants[37] = "V1B in component model_parameters (flux)" legend_constants[38] = "V2B in component model_parameters (flux)" legend_states[14] = "BCP in component BCP (nanomolar)" legend_constants[39] = "vdBC in component model_parameters (flux)" legend_constants[40] = "V3B in component model_parameters (flux)" legend_constants[41] = "V4B in component model_parameters (flux)" legend_states[15] = "BNP in component BNP (nanomolar)" legend_constants[42] = "vdBN in component model_parameters (flux)" legend_constants[43] = "vdIN in component model_parameters (flux)" legend_constants[44] = "kstot in component model_parameters (first_order_rate_constant)" legend_constants[45] = "Vphos in component model_parameters (flux)" legend_rates[0] = "d/dt MP in component MP (nanomolar)" legend_rates[2] = "d/dt MC in component MC (nanomolar)" legend_rates[3] = "d/dt MB in component MB (nanomolar)" legend_rates[4] = "d/dt PC in component PC (nanomolar)" legend_rates[7] = "d/dt CC in component CC (nanomolar)" legend_rates[5] = "d/dt PCP in component PCP (nanomolar)" legend_rates[8] = "d/dt CCP in component CCP (nanomolar)" legend_rates[6] = "d/dt PCC in component PCC (nanomolar)" legend_rates[10] = "d/dt PCN in component PCN (nanomolar)" legend_rates[9] = "d/dt PCCP in component PCCP (nanomolar)" legend_rates[11] = "d/dt PCNP in component PCNP (nanomolar)" legend_rates[13] = "d/dt BC in component BC (nanomolar)" legend_rates[14] = "d/dt BCP in component BCP (nanomolar)" legend_rates[1] = "d/dt BN in component BN (nanomolar)" legend_rates[15] = "d/dt BNP in component BNP (nanomolar)" legend_rates[12] = "d/dt IN in component IN (nanomolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.5 constants[0] = 1.1 constants[1] = 0.01 constants[2] = 0.7 constants[3] = 0.3 constants[4] = 1.0 constants[5] = 4.0 states[1] = 0.1 states[2] = 0.3 constants[6] = 1.0 constants[7] = 0.01 constants[8] = 1.0 constants[9] = 0.4 states[3] = 3.1 constants[10] = 0.2 constants[11] = 0.01 constants[12] = 0.8 constants[13] = 0.4 constants[14] = 4.0 states[4] = 0.1 constants[15] = 0.1 constants[16] = 0.3 constants[17] = 0.8 constants[18] = 0.2 constants[19] = 0.01 constants[20] = 0.3 states[5] = 0.1 states[6] = 0.1 states[7] = 0.1 constants[21] = 0.01 constants[22] = 0.6 constants[23] = 0.1 states[8] = 0.1 constants[24] = 0.7 constants[25] = 0.3 constants[26] = 0.7 constants[27] = 0.8 constants[28] = 0.2 constants[29] = 0.1 states[9] = 0.1 states[10] = 0.1 constants[30] = 0.5 constants[31] = 0.1 constants[32] = 0.1 states[11] = 0.1 states[12] = 0.1 constants[33] = 1.0 constants[34] = 1.0 states[13] = 0.1 constants[35] = 0.4 constants[36] = 0.2 constants[37] = 1.0 constants[38] = 0.1 states[14] = 0.1 constants[39] = 1.0 constants[40] = 1.0 constants[41] = 0.2 states[15] = 0.1 constants[42] = 0.5 constants[43] = 0.8 constants[44] = 1.0 constants[45] = 0.6 constants[46] = constants[4] constants[47] = 0.800000*constants[4] constants[48] = 0.700000*constants[4] constants[49] = 0.500000*constants[44] constants[50] = constants[45] constants[51] = constants[44] constants[52] = constants[45] constants[53] = constants[45] constants[54] = constants[44] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = constants[46]*((power(states[1], constants[5]))/(power(constants[2], constants[5])+power(states[1], constants[5])))-(constants[0]*(states[0]/(constants[3]+states[0]))+constants[1]*states[0]) rates[2] = constants[47]*((power(states[1], constants[5]))/(power(constants[8], constants[5])+power(states[1], constants[5])))-(constants[6]*(states[2]/(constants[9]+states[2]))+constants[7]*states[2]) rates[3] = constants[48]*((power(constants[12], constants[14]))/(power(constants[12], constants[14])+power(states[1], constants[14])))-(constants[10]*(states[3]/(constants[13]+states[3]))+constants[11]*states[3]) rates[4] = (constants[49]*states[0]+constants[20]*(states[5]/(constants[16]+states[5]))+constants[18]*states[6])-(constants[50]*(states[4]/(constants[15]+states[4]))+constants[17]*states[4]*states[7]+constants[19]*states[4]) rates[7] = (constants[51]*states[2]+constants[23]*(states[8]/(constants[16]+states[8]))+constants[18]*states[6])-(constants[22]*(states[7]/(constants[15]+states[7]))+constants[17]*states[4]*states[7]+constants[21]*states[7]) rates[5] = constants[50]*(states[4]/(constants[15]+states[4]))-(constants[20]*(states[5]/(constants[16]+states[5]))+constants[24]*(states[5]/(constants[25]+states[5]))+constants[19]*states[5]) rates[8] = constants[22]*(states[7]/(constants[15]+states[7]))-(constants[23]*(states[8]/(constants[16]+states[8]))+constants[26]*(states[8]/(constants[25]+states[8]))+constants[19]*states[8]) rates[6] = (constants[29]*(states[9]/(constants[16]+states[9]))+constants[17]*states[4]*states[7]+constants[28]*states[10])-(constants[52]*(states[6]/(constants[15]+states[6]))+constants[18]*states[6]+constants[27]*states[6]+constants[19]*states[6]) rates[10] = (constants[32]*(states[11]/(constants[16]+states[11]))+constants[27]*states[6]+constants[31]*states[12])-(constants[53]*(states[10]/(constants[15]+states[10]))+constants[28]*states[10]+constants[30]*states[1]*states[10]+constants[19]*states[10]) rates[9] = constants[52]*(states[6]/(constants[15]+states[6]))-(constants[29]*(states[9]/(constants[16]+states[9]))+constants[33]*(states[9]/(constants[25]+states[9]))+constants[19]*states[9]) rates[11] = constants[53]*(states[10]/(constants[15]+states[10]))-(constants[32]*(states[11]/(constants[16]+states[11]))+constants[34]*(states[11]/(constants[25]+states[11]))+constants[19]*states[11]) rates[13] = (constants[38]*(states[14]/(constants[16]+states[14]))+constants[36]*states[1]+constants[54]*states[3])-(constants[37]*(states[13]/(constants[15]+states[13]))+constants[35]*states[13]+constants[19]*states[13]) rates[14] = constants[37]*(states[13]/(constants[15]+states[13]))-(constants[38]*(states[14]/(constants[16]+states[14]))+constants[39]*(states[14]/(constants[25]+states[14]))+constants[19]*states[14]) rates[1] = (constants[41]*(states[15]/(constants[16]+states[15]))+constants[35]*states[13]+constants[31]*states[12])-(constants[40]*(states[1]/(constants[15]+states[1]))+constants[36]*states[1]+constants[30]*states[1]*states[10]+constants[19]*states[1]) rates[15] = constants[40]*(states[1]/(constants[15]+states[1]))-(constants[41]*(states[15]/(constants[16]+states[15]))+constants[42]*(states[15]/(constants[25]+states[15]))+constants[19]*states[15]) rates[12] = constants[30]*states[1]*states[10]-(constants[31]*states[12]+constants[43]*(states[12]/(constants[25]+states[12]))+constants[19]*states[12]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)