/* There are a total of 78 entries in the algebraic variable array. There are a total of 28 entries in each of the rate and state variable arrays. There are a total of 52 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (millijoule_per_mole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (nanoF). * ALGEBRAIC[2] is i_Na in component sodium_current (picoA). * ALGEBRAIC[12] is i_Ca_L in component L_type_Ca_channel (picoA). * ALGEBRAIC[25] is i_Ca_T in component T_type_Ca_channel (picoA). * ALGEBRAIC[37] is i_to in component Ca_independent_transient_outward_K_current (picoA). * ALGEBRAIC[62] is i_K1 in component inward_rectifier (picoA). * ALGEBRAIC[49] is i_Kr in component delayed_rectifier_K_current (picoA). * ALGEBRAIC[48] is i_Ks in component delayed_rectifier_K_current (picoA). * ALGEBRAIC[64] is i_B_Na in component background_currents (picoA). * ALGEBRAIC[65] is i_B_Ca in component background_currents (picoA). * ALGEBRAIC[66] is i_B_Cl in component background_currents (picoA). * ALGEBRAIC[67] is i_p in component sodium_potassium_pump (picoA). * ALGEBRAIC[68] is i_CaP in component sarcolemmal_calcium_pump_current (picoA). * ALGEBRAIC[69] is i_NaCa in component Na_Ca_ion_exchanger_current (picoA). * ALGEBRAIC[0] is i_Stim in component membrane (picoA). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (second). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (picoA). * ALGEBRAIC[1] is E_Na in component sodium_current (millivolt). * CONSTANTS[9] is P_Na in component sodium_current (nanolitre_per_second). * CONSTANTS[10] is Na_c in component cleft_space_ion_concentrations (millimolar). * STATES[1] is Na_i in component intracellular_ion_concentrations (millimolar). * STATES[2] is m in component sodium_current_m_gate (dimensionless). * STATES[3] is h1 in component sodium_current_h1_gate (dimensionless). * STATES[4] is h2 in component sodium_current_h2_gate (dimensionless). * ALGEBRAIC[3] is E0_m in component sodium_current_m_gate (millivolt). * ALGEBRAIC[4] is alpha_m in component sodium_current_m_gate (per_second). * ALGEBRAIC[5] is beta_m in component sodium_current_m_gate (per_second). * ALGEBRAIC[6] is alpha_h in component sodium_current_h1_gate (per_second). * ALGEBRAIC[7] is beta_h in component sodium_current_h1_gate (per_second). * ALGEBRAIC[8] is h_infinity in component sodium_current_h1_gate (dimensionless). * ALGEBRAIC[9] is tau_h1 in component sodium_current_h1_gate (second). * ALGEBRAIC[10] is tau_h2 in component sodium_current_h2_gate (second). * CONSTANTS[11] is g_Ca_L in component L_type_Ca_channel (nanoS). * CONSTANTS[12] is E_Ca_app in component L_type_Ca_channel (millivolt). * ALGEBRAIC[11] is d_prime in component L_type_Ca_channel (dimensionless). * STATES[5] is d_L in component L_type_Ca_channel_d_L_gate (dimensionless). * STATES[6] is f_L in component L_type_Ca_channel_f_L_gate (dimensionless). * ALGEBRAIC[13] is E0_alpha_d_L in component L_type_Ca_channel_d_L_gate (millivolt). * ALGEBRAIC[14] is E0_beta_d_L in component L_type_Ca_channel_d_L_gate (millivolt). * ALGEBRAIC[15] is alpha_d_L in component L_type_Ca_channel_d_L_gate (per_second). * ALGEBRAIC[16] is beta_d_L in component L_type_Ca_channel_d_L_gate (per_second). * ALGEBRAIC[17] is d_L_infinity in component L_type_Ca_channel_d_L_gate (dimensionless). * ALGEBRAIC[18] is tau_d_L in component L_type_Ca_channel_d_L_gate (second). * ALGEBRAIC[19] is E0_f_L in component L_type_Ca_channel_f_L_gate (millivolt). * ALGEBRAIC[20] is alpha_f_L in component L_type_Ca_channel_f_L_gate (per_second). * ALGEBRAIC[21] is beta_f_L in component L_type_Ca_channel_f_L_gate (per_second). * ALGEBRAIC[22] is f_L_infinity in component L_type_Ca_channel_f_L_gate (dimensionless). * ALGEBRAIC[23] is x_f in component L_type_Ca_channel_f_L_gate (dimensionless). * ALGEBRAIC[24] is tau_f_L in component L_type_Ca_channel_f_L_gate (second). * CONSTANTS[13] is g_Ca_T in component T_type_Ca_channel (nanoS). * CONSTANTS[14] is E_Ca_T in component T_type_Ca_channel (millivolt). * STATES[7] is d_T in component T_type_Ca_channel_d_T_gate (dimensionless). * STATES[8] is f_T in component T_type_Ca_channel_f_T_gate (dimensionless). * ALGEBRAIC[26] is E0_d_T in component T_type_Ca_channel_d_T_gate (millivolt). * ALGEBRAIC[27] is alpha_d_T in component T_type_Ca_channel_d_T_gate (per_second). * ALGEBRAIC[28] is beta_d_T in component T_type_Ca_channel_d_T_gate (per_second). * ALGEBRAIC[29] is d_T_infinity in component T_type_Ca_channel_d_T_gate (dimensionless). * ALGEBRAIC[30] is tau_d_T in component T_type_Ca_channel_d_T_gate (second). * ALGEBRAIC[31] is E0_f_T in component T_type_Ca_channel_f_T_gate (millivolt). * ALGEBRAIC[32] is alpha_f_T in component T_type_Ca_channel_f_T_gate (per_second). * ALGEBRAIC[33] is beta_f_T in component T_type_Ca_channel_f_T_gate (per_second). * ALGEBRAIC[34] is f_T_infinity in component T_type_Ca_channel_f_T_gate (dimensionless). * ALGEBRAIC[35] is tau_f_T in component T_type_Ca_channel_f_T_gate (second). * ALGEBRAIC[36] is E_K in component Ca_independent_transient_outward_K_current (millivolt). * CONSTANTS[15] is g_to in component Ca_independent_transient_outward_K_current (nanoS). * CONSTANTS[16] is K_c in component cleft_space_ion_concentrations (millimolar). * STATES[9] is K_i in component intracellular_ion_concentrations (millimolar). * STATES[10] is r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * STATES[11] is s1 in component Ca_independent_transient_outward_K_current_s1_gate (dimensionless). * STATES[12] is s2 in component Ca_independent_transient_outward_K_current_s2_gate (dimensionless). * STATES[13] is s3 in component Ca_independent_transient_outward_K_current_s3_gate (dimensionless). * ALGEBRAIC[38] is alpha_r in component Ca_independent_transient_outward_K_current_r_gate (per_second). * ALGEBRAIC[39] is beta_r in component Ca_independent_transient_outward_K_current_r_gate (per_second). * ALGEBRAIC[41] is tau_r in component Ca_independent_transient_outward_K_current_r_gate (second). * ALGEBRAIC[40] is r_infinity in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * ALGEBRAIC[43] is tau_s1 in component Ca_independent_transient_outward_K_current_s1_gate (second). * ALGEBRAIC[42] is s1_infinity in component Ca_independent_transient_outward_K_current_s1_gate (dimensionless). * ALGEBRAIC[45] is tau_s2 in component Ca_independent_transient_outward_K_current_s2_gate (second). * ALGEBRAIC[44] is s2_infinity in component Ca_independent_transient_outward_K_current_s2_gate (dimensionless). * ALGEBRAIC[47] is tau_s3 in component Ca_independent_transient_outward_K_current_s3_gate (second). * ALGEBRAIC[46] is s3_infinity in component Ca_independent_transient_outward_K_current_s3_gate (dimensionless). * CONSTANTS[17] is g_Ks in component delayed_rectifier_K_current (nanoS). * CONSTANTS[18] is g_Kr in component delayed_rectifier_K_current (nanoS). * STATES[14] is z in component delayed_rectifier_K_current_z_gate (dimensionless). * STATES[15] is p_a in component delayed_rectifier_K_current_pa_gate (dimensionless). * STATES[16] is p_i in component delayed_rectifier_K_current_pi_gate (dimensionless). * ALGEBRAIC[50] is alpha_z in component delayed_rectifier_K_current_z_gate (per_second). * ALGEBRAIC[51] is beta_z in component delayed_rectifier_K_current_z_gate (per_second). * ALGEBRAIC[53] is tau_z in component delayed_rectifier_K_current_z_gate (second). * ALGEBRAIC[52] is z_infinity in component delayed_rectifier_K_current_z_gate (dimensionless). * ALGEBRAIC[54] is alpha_p_a in component delayed_rectifier_K_current_pa_gate (per_second). * ALGEBRAIC[55] is beta_p_a in component delayed_rectifier_K_current_pa_gate (per_second). * ALGEBRAIC[57] is tau_p_a in component delayed_rectifier_K_current_pa_gate (second). * ALGEBRAIC[56] is p_a_infinity in component delayed_rectifier_K_current_pa_gate (dimensionless). * ALGEBRAIC[58] is alpha_p_i in component delayed_rectifier_K_current_pi_gate (per_second). * ALGEBRAIC[59] is beta_p_i in component delayed_rectifier_K_current_pi_gate (per_second). * ALGEBRAIC[61] is tau_p_i in component delayed_rectifier_K_current_pi_gate (second). * ALGEBRAIC[60] is p_i_infinity in component delayed_rectifier_K_current_pi_gate (dimensionless). * CONSTANTS[19] is g_K1 in component inward_rectifier (nanoS). * CONSTANTS[20] is KmK1 in component inward_rectifier (millimolar). * CONSTANTS[21] is steepK1 in component inward_rectifier (dimensionless). * CONSTANTS[22] is shiftK1 in component inward_rectifier (millivolt). * CONSTANTS[23] is g_B_Na in component background_currents (nanoS). * CONSTANTS[24] is g_B_Ca in component background_currents (nanoS). * CONSTANTS[25] is g_B_Cl in component background_currents (nanoS). * ALGEBRAIC[63] is E_Ca in component background_currents (millivolt). * CONSTANTS[50] is E_Cl in component background_currents (millivolt). * CONSTANTS[51] is E_B_Cl in component background_currents (millivolt). * CONSTANTS[26] is Ca_c in component cleft_space_ion_concentrations (millimolar). * STATES[17] is Ca_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[27] is Cl_c in component cleft_space_ion_concentrations (millimolar). * CONSTANTS[28] is Cl_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[29] is k_NaK_K in component sodium_potassium_pump (millimolar). * CONSTANTS[30] is k_NaK_Na in component sodium_potassium_pump (millimolar). * CONSTANTS[31] is i_NaK_max in component sodium_potassium_pump (picoA). * CONSTANTS[32] is i_CaP_max in component sarcolemmal_calcium_pump_current (picoA). * CONSTANTS[33] is k_CaP in component sarcolemmal_calcium_pump_current (millimolar). * CONSTANTS[34] is k_NaCa in component Na_Ca_ion_exchanger_current (picoA_per_millimolar_4). * CONSTANTS[35] is d_NaCa in component Na_Ca_ion_exchanger_current (per_millimolar_4). * CONSTANTS[36] is gamma in component Na_Ca_ion_exchanger_current (dimensionless). * CONSTANTS[37] is Vol_i in component intracellular_ion_concentrations (nanolitre). * CONSTANTS[38] is Vol_Ca in component intracellular_ion_concentrations (nanolitre). * ALGEBRAIC[75] is i_up in component Ca_handling_by_the_SR (picoA). * ALGEBRAIC[77] is i_rel in component Ca_handling_by_the_SR (picoA). * ALGEBRAIC[70] is dOCdt in component intracellular_Ca_buffering (per_second). * ALGEBRAIC[71] is dOTCdt in component intracellular_Ca_buffering (per_second). * ALGEBRAIC[72] is dOTMgCdt in component intracellular_Ca_buffering (per_second). * STATES[18] is O_C in component intracellular_Ca_buffering (dimensionless). * STATES[19] is O_TC in component intracellular_Ca_buffering (dimensionless). * STATES[20] is O_TMgC in component intracellular_Ca_buffering (dimensionless). * STATES[21] is O_TMgMg in component intracellular_Ca_buffering (dimensionless). * CONSTANTS[39] is Mg_i in component intracellular_Ca_buffering (millimolar). * ALGEBRAIC[76] is i_tr in component Ca_handling_by_the_SR (picoA). * CONSTANTS[40] is I_up_max in component Ca_handling_by_the_SR (picoA). * CONSTANTS[41] is k_cyca in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[42] is k_srca in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[43] is k_xcs in component Ca_handling_by_the_SR (dimensionless). * CONSTANTS[44] is alpha_rel in component Ca_handling_by_the_SR (picoA_per_millimolar). * STATES[22] is Ca_rel in component Ca_handling_by_the_SR (millimolar). * STATES[23] is Ca_up in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[45] is Vol_up in component Ca_handling_by_the_SR (nanolitre). * CONSTANTS[46] is Vol_rel in component Ca_handling_by_the_SR (nanolitre). * ALGEBRAIC[73] is r_act in component Ca_handling_by_the_SR (per_second). * ALGEBRAIC[74] is r_inact in component Ca_handling_by_the_SR (per_second). * STATES[24] is O_Calse in component Ca_handling_by_the_SR (dimensionless). * STATES[25] is F1 in component Ca_handling_by_the_SR (dimensionless). * STATES[26] is F2 in component Ca_handling_by_the_SR (dimensionless). * STATES[27] is F3 in component Ca_handling_by_the_SR (dimensionless). * CONSTANTS[47] is tau_tr in component Ca_handling_by_the_SR (second). * CONSTANTS[48] is k_rel in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[49] is k_F3 in component Ca_handling_by_the_SR (per_second). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[2] is d/dt m in component sodium_current_m_gate (dimensionless). * RATES[3] is d/dt h1 in component sodium_current_h1_gate (dimensionless). * RATES[4] is d/dt h2 in component sodium_current_h2_gate (dimensionless). * RATES[5] is d/dt d_L in component L_type_Ca_channel_d_L_gate (dimensionless). * RATES[6] is d/dt f_L in component L_type_Ca_channel_f_L_gate (dimensionless). * RATES[7] is d/dt d_T in component T_type_Ca_channel_d_T_gate (dimensionless). * RATES[8] is d/dt f_T in component T_type_Ca_channel_f_T_gate (dimensionless). * RATES[10] is d/dt r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * RATES[11] is d/dt s1 in component Ca_independent_transient_outward_K_current_s1_gate (dimensionless). * RATES[12] is d/dt s2 in component Ca_independent_transient_outward_K_current_s2_gate (dimensionless). * RATES[13] is d/dt s3 in component Ca_independent_transient_outward_K_current_s3_gate (dimensionless). * RATES[14] is d/dt z in component delayed_rectifier_K_current_z_gate (dimensionless). * RATES[15] is d/dt p_a in component delayed_rectifier_K_current_pa_gate (dimensionless). * RATES[16] is d/dt p_i in component delayed_rectifier_K_current_pi_gate (dimensionless). * RATES[1] is d/dt Na_i in component intracellular_ion_concentrations (millimolar). * RATES[9] is d/dt K_i in component intracellular_ion_concentrations (millimolar). * RATES[17] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar). * RATES[18] is d/dt O_C in component intracellular_Ca_buffering (dimensionless). * RATES[19] is d/dt O_TC in component intracellular_Ca_buffering (dimensionless). * RATES[20] is d/dt O_TMgC in component intracellular_Ca_buffering (dimensionless). * RATES[21] is d/dt O_TMgMg in component intracellular_Ca_buffering (dimensionless). * RATES[24] is d/dt O_Calse in component Ca_handling_by_the_SR (dimensionless). * RATES[22] is d/dt Ca_rel in component Ca_handling_by_the_SR (millimolar). * RATES[23] is d/dt Ca_up in component Ca_handling_by_the_SR (millimolar). * RATES[25] is d/dt F1 in component Ca_handling_by_the_SR (dimensionless). * RATES[26] is d/dt F2 in component Ca_handling_by_the_SR (dimensionless). * RATES[27] is d/dt F3 in component Ca_handling_by_the_SR (dimensionless). * There are a total of 3 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -69.83663; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 308; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 0.00005; CONSTANTS[4] = 0.1; CONSTANTS[5] = 100000; CONSTANTS[6] = 1; CONSTANTS[7] = 0.0008; CONSTANTS[8] = -2; CONSTANTS[9] = 0.0000014; CONSTANTS[10] = 140; STATES[1] = 8.4; STATES[2] = 0.01309; STATES[3] = 0.706; STATES[4] = 0.61493; CONSTANTS[11] = 0.004; CONSTANTS[12] = 60; STATES[5] = 3e-5; STATES[6] = 0.99981; CONSTANTS[13] = 0.006; CONSTANTS[14] = 38; STATES[7] = 4.6e-4; STATES[8] = 0.30752; CONSTANTS[15] = 0.050002; CONSTANTS[16] = 5; STATES[9] = 100; STATES[10] = 6e-5; STATES[11] = 0.5753; STATES[12] = 0.39871; STATES[13] = 0.57363; CONSTANTS[17] = 0.0025; CONSTANTS[18] = 0.0035; STATES[14] = 0.02032; STATES[15] = 1.6e-4; STATES[16] = 0.76898; CONSTANTS[19] = 0.005088; CONSTANTS[20] = 0.59; CONSTANTS[21] = 1.393; CONSTANTS[22] = -3.6; CONSTANTS[23] = 6.4e-5; CONSTANTS[24] = 3.1e-5; CONSTANTS[25] = 1.2e-4; CONSTANTS[26] = 2.5; STATES[17] = 7.305e-5; CONSTANTS[27] = 132; CONSTANTS[28] = 30; CONSTANTS[29] = 1; CONSTANTS[30] = 11; CONSTANTS[31] = 0.06441; CONSTANTS[32] = 0.009509; CONSTANTS[33] = 2e-4; CONSTANTS[34] = 2e-5; CONSTANTS[35] = 3e-4; CONSTANTS[36] = 0.45; CONSTANTS[37] = 1.26e-5; CONSTANTS[38] = 5.884e-6; STATES[18] = 0.02981; STATES[19] = 0.01442; STATES[20] = 0.23532; STATES[21] = 0.67476; CONSTANTS[39] = 2.5; CONSTANTS[40] = 2.8; CONSTANTS[41] = 0.0003; CONSTANTS[42] = 0.5; CONSTANTS[43] = 0.4; CONSTANTS[44] = 200; STATES[22] = 0.59984; STATES[23] = 0.64913; CONSTANTS[45] = 3.969e-7; CONSTANTS[46] = 4.41e-8; STATES[24] = 0.41837; STATES[25] = 0.21603; STATES[26] = 0.00205; STATES[27] = 0.68492; CONSTANTS[47] = 0.01; CONSTANTS[48] = 0.0003; CONSTANTS[49] = 0.815; CONSTANTS[50] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[28]/CONSTANTS[27]); CONSTANTS[51] = CONSTANTS[50] - 0.490000*(CONSTANTS[50]+30.5900); RATES[0] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; RATES[16] = 0.1001; RATES[1] = 0.1001; RATES[9] = 0.1001; RATES[17] = 0.1001; RATES[18] = 0.1001; RATES[19] = 0.1001; RATES[20] = 0.1001; RATES[21] = 0.1001; RATES[24] = 0.1001; RATES[22] = 0.1001; RATES[23] = 0.1001; RATES[25] = 0.1001; RATES[26] = 0.1001; RATES[27] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[49]+ALGEBRAIC[48]+ALGEBRAIC[2]+ALGEBRAIC[12]+ALGEBRAIC[25]+ALGEBRAIC[37]+ALGEBRAIC[62]+ALGEBRAIC[64]+ALGEBRAIC[65]+ALGEBRAIC[66]+ALGEBRAIC[67]+ALGEBRAIC[68]+ALGEBRAIC[69]+ALGEBRAIC[0]); resid[1] = RATES[2] - ALGEBRAIC[4]*(1.00000 - STATES[2]) - ALGEBRAIC[5]*STATES[2]; resid[2] = RATES[3] - (ALGEBRAIC[8] - STATES[3])/ALGEBRAIC[9]; resid[3] = RATES[4] - (ALGEBRAIC[8] - STATES[4])/ALGEBRAIC[10]; resid[4] = RATES[5] - (ALGEBRAIC[17] - STATES[5])/ALGEBRAIC[18]; resid[5] = RATES[6] - (ALGEBRAIC[22] - STATES[6])/ALGEBRAIC[24]; resid[6] = RATES[7] - (ALGEBRAIC[29] - STATES[7])/ALGEBRAIC[30]; resid[7] = RATES[8] - (ALGEBRAIC[34] - STATES[8])/ALGEBRAIC[35]; resid[8] = RATES[10] - (ALGEBRAIC[40] - STATES[10])/ALGEBRAIC[41]; resid[9] = RATES[11] - (ALGEBRAIC[42] - STATES[11])/ALGEBRAIC[43]; resid[10] = RATES[12] - (ALGEBRAIC[44] - STATES[12])/ALGEBRAIC[45]; resid[11] = RATES[13] - (ALGEBRAIC[46] - STATES[13])/ALGEBRAIC[47]; resid[12] = RATES[14] - (ALGEBRAIC[52] - STATES[14])/ALGEBRAIC[53]; resid[13] = RATES[15] - (ALGEBRAIC[56] - STATES[15])/ALGEBRAIC[57]; resid[14] = RATES[16] - (ALGEBRAIC[60] - STATES[16])/ALGEBRAIC[61]; resid[15] = RATES[1] - - (ALGEBRAIC[2]+ALGEBRAIC[64]+ 3.00000*ALGEBRAIC[67]+ 3.00000*ALGEBRAIC[69])/( CONSTANTS[37]*CONSTANTS[2]); resid[16] = RATES[9] - - ((ALGEBRAIC[37]+ALGEBRAIC[62]+ALGEBRAIC[49]+ALGEBRAIC[48]) - 2.00000*ALGEBRAIC[67])/( CONSTANTS[37]*CONSTANTS[2]); resid[17] = RATES[17] - - ((((ALGEBRAIC[12]+ALGEBRAIC[25]+ALGEBRAIC[65]+ALGEBRAIC[68]) - 2.00000*ALGEBRAIC[69])+ALGEBRAIC[75]) - ALGEBRAIC[77])/( 2.00000*CONSTANTS[38]*CONSTANTS[2]) - ( 0.0800000*ALGEBRAIC[71]+ 0.160000*ALGEBRAIC[72]+ 0.0450000*ALGEBRAIC[70]); resid[18] = RATES[18] - ALGEBRAIC[70]; resid[19] = RATES[19] - ALGEBRAIC[71]; resid[20] = RATES[20] - ALGEBRAIC[72]; resid[21] = RATES[21] - 2000.00*CONSTANTS[39]*((1.00000 - STATES[20]) - STATES[21]) - 666.000*STATES[21]; resid[22] = RATES[24] - 480.000*STATES[22]*(1.00000 - STATES[24]) - 400.000*STATES[24]; resid[23] = RATES[22] - (ALGEBRAIC[76] - ALGEBRAIC[77])/( 2.00000*CONSTANTS[46]*CONSTANTS[2]) - 31.0000*RATES[24]; resid[24] = RATES[23] - (ALGEBRAIC[75] - ALGEBRAIC[76])/( 2.00000*CONSTANTS[45]*CONSTANTS[2]); resid[25] = RATES[25] - CONSTANTS[49]*STATES[27] - ALGEBRAIC[73]*STATES[25]; resid[26] = RATES[26] - ALGEBRAIC[73]*STATES[25] - ALGEBRAIC[74]*STATES[26]; resid[27] = RATES[27] - STATES[26]*ALGEBRAIC[74] - CONSTANTS[49]*STATES[27]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[2] = ( (( CONSTANTS[9]*pow(STATES[2], 3.00000)*( 0.635000*STATES[3]+ 0.365000*STATES[4])*CONSTANTS[10]*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*(exp(( (STATES[0] - ALGEBRAIC[1])*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000))/(exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[3] = STATES[0]+44.4000; ALGEBRAIC[4] = ( - 460.000*ALGEBRAIC[3])/(exp(ALGEBRAIC[3]/- 12.6730) - 1.00000); ALGEBRAIC[5] = 18400.0*exp(ALGEBRAIC[3]/- 12.6730); ALGEBRAIC[6] = 44.9000*exp((STATES[0]+66.9000)/- 5.57000); ALGEBRAIC[7] = 1491.00/(1.00000+ 323.300*exp((STATES[0]+94.6000)/- 12.9000)); ALGEBRAIC[8] = ALGEBRAIC[6]/(ALGEBRAIC[6]+ALGEBRAIC[7]); ALGEBRAIC[9] = 0.0300000/(1.00000+exp((STATES[0]+40.0000)/6.00000))+0.000350000; ALGEBRAIC[10] = 0.120000/(1.00000+exp((STATES[0]+60.0000)/2.00000))+0.00295000; ALGEBRAIC[11] = 1.00000/(1.00000+exp((STATES[0] - 33.0000)/- 12.0000)); ALGEBRAIC[12] = CONSTANTS[11]*STATES[5]*STATES[6]*ALGEBRAIC[11]*(STATES[0] - CONSTANTS[12]); ALGEBRAIC[17] = 1.00000/(1.00000+exp((STATES[0]+0.950000)/- 6.60000)); ALGEBRAIC[13] = STATES[0]+35.0000; ALGEBRAIC[15] = ( - 16.7200*ALGEBRAIC[13])/(exp(ALGEBRAIC[13]/- 2.50000) - 1.00000)+( - 50.0000*STATES[0])/(exp(STATES[0]/- 4.80800) - 1.00000); ALGEBRAIC[14] = STATES[0] - 5.00000; ALGEBRAIC[16] = ( 4.48000*ALGEBRAIC[14])/(exp(ALGEBRAIC[14]/2.50000) - 1.00000); ALGEBRAIC[18] = 1.00000/(ALGEBRAIC[15]+ALGEBRAIC[16]); ALGEBRAIC[19] = STATES[0]+28.0000; ALGEBRAIC[20] = ( 8.49000*ALGEBRAIC[19])/(exp(ALGEBRAIC[19]/4.00000) - 1.00000); ALGEBRAIC[21] = 67.9220/(1.00000+exp(ALGEBRAIC[19]/- 4.00000)); ALGEBRAIC[22] = ALGEBRAIC[20]/(ALGEBRAIC[20]+ALGEBRAIC[21]); ALGEBRAIC[23] = (STATES[0]+37.4270)/20.2130; ALGEBRAIC[24] = 0.211000*exp( - ALGEBRAIC[23]*ALGEBRAIC[23])+0.0150000; ALGEBRAIC[25] = CONSTANTS[13]*STATES[7]*STATES[8]*(STATES[0] - CONSTANTS[14]); ALGEBRAIC[26] = STATES[0]+23.0000; ALGEBRAIC[29] = 1.00000/(1.00000+exp(ALGEBRAIC[26]/- 6.10000)); ALGEBRAIC[27] = 674.173*exp(ALGEBRAIC[26]/30.0000); ALGEBRAIC[28] = 674.173*exp(ALGEBRAIC[26]/- 30.0000); ALGEBRAIC[30] = 1.00000/(ALGEBRAIC[27]+ALGEBRAIC[28]); ALGEBRAIC[31] = STATES[0]+75.0000; ALGEBRAIC[32] = 9.63700*exp(ALGEBRAIC[31]/- 83.3330); ALGEBRAIC[33] = 9.63700*exp(ALGEBRAIC[31]/15.3850); ALGEBRAIC[34] = ALGEBRAIC[32]/(ALGEBRAIC[32]+ALGEBRAIC[33]); ALGEBRAIC[35] = 1.00000/(ALGEBRAIC[32]+ALGEBRAIC[33]); ALGEBRAIC[36] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[16]/STATES[9]); ALGEBRAIC[37] = CONSTANTS[15]*STATES[10]*( 0.590000*pow(STATES[11], 3.00000)+ 0.410000*pow(STATES[12], 3.00000))*( 0.600000*pow(STATES[13], 6.00000)+0.400000)*(STATES[0] - ALGEBRAIC[36]); ALGEBRAIC[40] = 1.00000/(1.00000+exp((STATES[0]+15.0000)/- 5.63300)); ALGEBRAIC[38] = 386.600*exp(STATES[0]/12.0000); ALGEBRAIC[39] = 8.01100*exp(STATES[0]/- 7.20000); ALGEBRAIC[41] = 1.00000/(ALGEBRAIC[38]+ALGEBRAIC[39])+0.000400000; ALGEBRAIC[42] = 1.00000/(1.00000+exp((STATES[0]+28.2900)/7.06000)); ALGEBRAIC[43] = 0.546600/(1.00000+exp((STATES[0]+32.8000)/0.100000))+0.0204000; ALGEBRAIC[44] = 1.00000/(1.00000+exp((STATES[0]+28.2900)/7.06000)); ALGEBRAIC[45] = 5.75000/(1.00000+exp((STATES[0]+32.8000)/0.100000))+0.450000/(1.00000+exp((STATES[0] - 13.5400)/- 13.9700)); ALGEBRAIC[46] = (1.00000/(1.00000+exp((STATES[0]+50.6700)/27.3800))+0.666000)/1.66600; ALGEBRAIC[47] = 7.50000/(1.00000+exp((STATES[0]+23.0000)/0.500000))+0.500000; ALGEBRAIC[48] = CONSTANTS[17]*STATES[14]*(STATES[0] - ALGEBRAIC[36]); ALGEBRAIC[49] = CONSTANTS[18]*STATES[15]*STATES[16]*(STATES[0] - ALGEBRAIC[36]); ALGEBRAIC[52] = 1.00000/(1.00000+exp((STATES[0] - 0.900000)/- 13.8000)); ALGEBRAIC[50] = 1.66000*exp(STATES[0]/69.4520); ALGEBRAIC[51] = 0.300000*exp(STATES[0]/- 21.8260); ALGEBRAIC[53] = 1.00000/(ALGEBRAIC[50]+ALGEBRAIC[51])+0.0600000; ALGEBRAIC[56] = 1.00000/(1.00000+exp((STATES[0]+5.10000)/- 7.40000)); ALGEBRAIC[54] = 9.00000*exp(STATES[0]/25.3710); ALGEBRAIC[55] = 1.30000*exp(STATES[0]/- 13.0260); ALGEBRAIC[57] = 1.00000/(ALGEBRAIC[54]+ALGEBRAIC[55]); ALGEBRAIC[60] = 1.00000/(1.00000+exp((STATES[0]+47.3921)/18.6603)); ALGEBRAIC[58] = 100.000*exp(STATES[0]/- 54.6450); ALGEBRAIC[59] = 656.000*exp(STATES[0]/106.157); ALGEBRAIC[61] = 1.00000/(ALGEBRAIC[58]+ALGEBRAIC[59]); ALGEBRAIC[62] = ( CONSTANTS[19]*(STATES[0] - ALGEBRAIC[36])*pow(CONSTANTS[16]/(CONSTANTS[16]+CONSTANTS[20]), 3.00000)*1.00000)/(1.00000+exp(( CONSTANTS[21]*CONSTANTS[2]*((STATES[0] - ALGEBRAIC[36]) - CONSTANTS[22]))/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[64] = CONSTANTS[23]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[63] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[26]/STATES[17]); ALGEBRAIC[65] = CONSTANTS[24]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[66] = CONSTANTS[25]*(STATES[0] - CONSTANTS[51])*(1.00000+exp((STATES[0] - (CONSTANTS[50]+36.9500))/74.5140)); ALGEBRAIC[67] = ( (( (( CONSTANTS[31]*CONSTANTS[16])/(CONSTANTS[16]+CONSTANTS[29]))*pow(STATES[1], 1.50000))/(pow(STATES[1], 1.50000)+pow(CONSTANTS[30], 1.50000)))*1.60000)/(1.50000+exp((STATES[0]+60.0000)/- 40.0000)); ALGEBRAIC[68] = ( CONSTANTS[32]*STATES[17])/(STATES[17]+CONSTANTS[33]); ALGEBRAIC[69] = ( CONSTANTS[34]*( pow(STATES[1], 3.00000)*CONSTANTS[26]*exp(( CONSTANTS[36]*CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1])) - pow(CONSTANTS[10], 3.00000)*STATES[17]*exp(( (CONSTANTS[36] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/(1.00000+ CONSTANTS[35]*( pow(CONSTANTS[10], 3.00000)*STATES[17]+ pow(STATES[1], 3.00000)*CONSTANTS[26])*(1.00000+STATES[17]/0.00690000)); ALGEBRAIC[70] = 200000.*STATES[17]*(1.00000 - STATES[18]) - 476.000*STATES[18]; ALGEBRAIC[71] = 78400.0*STATES[17]*(1.00000 - STATES[19]) - 392.000*STATES[19]; ALGEBRAIC[72] = 200000.*STATES[17]*((1.00000 - STATES[20]) - STATES[21]) - 6.60000*STATES[20]; ALGEBRAIC[73] = 203.800*exp( 0.0800000*(STATES[0] - 40.0000))+ 203.800*pow(STATES[17]/(STATES[17]+CONSTANTS[48]), 4.00000); ALGEBRAIC[74] = 33.9600+ 339.600*pow(STATES[17]/(STATES[17]+CONSTANTS[48]), 4.00000); ALGEBRAIC[75] = ( CONSTANTS[40]*(STATES[17]/CONSTANTS[41] - ( pow(CONSTANTS[43], 2.00000)*STATES[23])/CONSTANTS[42]))/((STATES[17]+CONSTANTS[41])/CONSTANTS[41]+( CONSTANTS[43]*(STATES[23]+CONSTANTS[42]))/CONSTANTS[42]); ALGEBRAIC[76] = ( (STATES[23] - STATES[22])*2.00000*CONSTANTS[2]*CONSTANTS[46])/CONSTANTS[47]; ALGEBRAIC[77] = CONSTANTS[44]*pow(STATES[26]/(STATES[26]+0.250000), 2.00000)*(STATES[22] - STATES[17]); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; SI[21] = 1.0; SI[22] = 1.0; SI[23] = 1.0; SI[24] = 1.0; SI[25] = 1.0; SI[26] = 1.0; SI[27] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; }