# Size of variable arrays: sizeAlgebraic = 47 sizeStates = 13 sizeConstants = 55 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (millisecond)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "R in component membrane (joule_per_mole_kelvin)" legend_constants[1] = "T in component membrane (kelvin)" legend_constants[2] = "F in component membrane (coulomb_per_millimole)" legend_algebraic[20] = "i_Na in component fast_sodium_current (microA_per_microF)" legend_algebraic[39] = "i_Ca in component L_type_Ca_current (microA_per_microF)" legend_algebraic[40] = "i_CaK in component L_type_Ca_current (microA_per_microF)" legend_algebraic[26] = "i_Kr in component rapid_activating_delayed_rectifiyer_K_current (microA_per_microF)" legend_algebraic[27] = "i_Ks in component slow_activating_delayed_rectifiyer_K_current (microA_per_microF)" legend_algebraic[28] = "i_to in component transient_outward_potassium_current (microA_per_microF)" legend_algebraic[24] = "i_K1 in component time_independent_potassium_current (microA_per_microF)" legend_algebraic[30] = "i_Kp in component plateau_potassium_current (microA_per_microF)" legend_algebraic[33] = "i_NaCa in component Na_Ca_exchanger (microA_per_microF)" legend_algebraic[32] = "i_NaK in component sodium_potassium_pump (microA_per_microF)" legend_algebraic[34] = "i_p_Ca in component sarcolemmal_calcium_pump (microA_per_microF)" legend_algebraic[36] = "i_Ca_b in component calcium_background_current (microA_per_microF)" legend_algebraic[37] = "i_Na_b in component sodium_background_current (microA_per_microF)" legend_algebraic[10] = "i_Stim in component membrane (microA_per_microF)" legend_constants[3] = "stim_start in component membrane (millisecond)" legend_constants[4] = "stim_end in component membrane (millisecond)" legend_constants[5] = "stim_period in component membrane (millisecond)" legend_constants[6] = "stim_duration in component membrane (millisecond)" legend_constants[7] = "stim_amplitude in component membrane (microA_per_microF)" legend_constants[50] = "E_Na in component fast_sodium_current (millivolt)" legend_constants[8] = "g_Na in component fast_sodium_current (milliS_per_microF)" legend_constants[9] = "Na_o in component standard_ionic_concentrations (millimolar)" legend_constants[10] = "Na_i in component standard_ionic_concentrations (millimolar)" legend_states[1] = "m in component fast_sodium_current_m_gate (dimensionless)" legend_states[2] = "h in component fast_sodium_current_h_gate (dimensionless)" legend_states[3] = "j in component fast_sodium_current_j_gate (dimensionless)" legend_algebraic[11] = "alpha_m in component fast_sodium_current_m_gate (per_millisecond)" legend_algebraic[21] = "beta_m in component fast_sodium_current_m_gate (per_millisecond)" legend_algebraic[0] = "E0_m in component fast_sodium_current_m_gate (millivolt)" legend_algebraic[1] = "alpha_h in component fast_sodium_current_h_gate (per_millisecond)" legend_algebraic[12] = "beta_h in component fast_sodium_current_h_gate (per_millisecond)" legend_constants[11] = "shift_h in component fast_sodium_current_h_gate (millivolt)" legend_algebraic[2] = "alpha_j in component fast_sodium_current_j_gate (per_millisecond)" legend_algebraic[13] = "beta_j in component fast_sodium_current_j_gate (per_millisecond)" legend_constants[12] = "shift_j in component fast_sodium_current_j_gate (millivolt)" legend_constants[13] = "g_K1 in component time_independent_potassium_current (milliS_per_microF)" legend_constants[14] = "K_mK1 in component time_independent_potassium_current (millimolar)" legend_constants[51] = "E_K in component rapid_activating_delayed_rectifiyer_K_current (millivolt)" legend_constants[15] = "K_o in component standard_ionic_concentrations (millimolar)" legend_algebraic[23] = "K1_infinity in component time_independent_potassium_current_K1_gate (dimensionless)" legend_constants[16] = "g_Kr in component rapid_activating_delayed_rectifiyer_K_current (milliS_per_microF)" legend_algebraic[25] = "R_V in component rapid_activating_delayed_rectifiyer_K_current (dimensionless)" legend_constants[17] = "K_i in component standard_ionic_concentrations (millimolar)" legend_states[4] = "X_kr in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless)" legend_algebraic[3] = "X_kr_inf in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless)" legend_algebraic[14] = "tau_X_kr in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (millisecond)" legend_constants[18] = "g_Ks in component slow_activating_delayed_rectifiyer_K_current (milliS_per_microF)" legend_constants[52] = "E_Ks in component slow_activating_delayed_rectifiyer_K_current (millivolt)" legend_states[5] = "X_ks in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (dimensionless)" legend_algebraic[15] = "tau_X_ks in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (millisecond)" legend_algebraic[4] = "X_ks_infinity in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (dimensionless)" legend_constants[19] = "g_to in component transient_outward_potassium_current (milliS_per_microF)" legend_states[6] = "X_to in component transient_outward_potassium_current_X_to_gate (dimensionless)" legend_states[7] = "Y_to in component transient_outward_potassium_current_Y_to_gate (dimensionless)" legend_algebraic[5] = "alpha_X_to in component transient_outward_potassium_current_X_to_gate (per_millisecond)" legend_algebraic[16] = "beta_X_to in component transient_outward_potassium_current_X_to_gate (per_millisecond)" legend_algebraic[6] = "alpha_Y_to in component transient_outward_potassium_current_Y_to_gate (per_millisecond)" legend_algebraic[17] = "beta_Y_to in component transient_outward_potassium_current_Y_to_gate (per_millisecond)" legend_constants[20] = "g_Kp in component plateau_potassium_current (milliS_per_microF)" legend_algebraic[29] = "Kp_V in component plateau_potassium_current_Kp_gate (dimensionless)" legend_constants[21] = "i_NaK_max in component sodium_potassium_pump (microA_per_microF)" legend_algebraic[31] = "f_NaK in component sodium_potassium_pump (dimensionless)" legend_constants[22] = "K_mNai in component sodium_potassium_pump (millimolar)" legend_constants[23] = "K_mKo in component sodium_potassium_pump (millimolar)" legend_constants[53] = "sigma in component sodium_potassium_pump (dimensionless)" legend_constants[24] = "K_mCa in component Na_Ca_exchanger (micromolar)" legend_constants[25] = "K_mNa in component Na_Ca_exchanger (millimolar)" legend_constants[26] = "K_NaCa in component Na_Ca_exchanger (microA_per_microF)" legend_constants[27] = "K_sat in component Na_Ca_exchanger (dimensionless)" legend_constants[28] = "eta in component Na_Ca_exchanger (dimensionless)" legend_states[8] = "Ca_i in component calcium_dynamics (micromolar)" legend_constants[29] = "Ca_o in component standard_ionic_concentrations (micromolar)" legend_constants[30] = "K_mpCa in component sarcolemmal_calcium_pump (micromolar)" legend_constants[31] = "i_pCa_max in component sarcolemmal_calcium_pump (microA_per_microF)" legend_constants[32] = "g_Cab in component calcium_background_current (milliS_per_microF)" legend_algebraic[35] = "E_Ca in component calcium_background_current (millivolt)" legend_constants[33] = "g_Nab in component sodium_background_current (milliS_per_microF)" legend_constants[34] = "P_Ca in component L_type_Ca_current (cm_per_millisecond)" legend_constants[35] = "P_CaK in component L_type_Ca_current (cm_per_millisecond)" legend_constants[36] = "i_Ca_half in component L_type_Ca_current (microA_per_microF)" legend_algebraic[38] = "i_Ca_max in component L_type_Ca_current (microA_per_microF)" legend_constants[37] = "C_sc in component L_type_Ca_current (microF_per_cm2)" legend_states[9] = "f in component L_type_Ca_current_f_gate (dimensionless)" legend_states[10] = "d in component L_type_Ca_current_d_gate (dimensionless)" legend_states[11] = "f_Ca in component L_type_Ca_current_f_Ca_gate (dimensionless)" legend_algebraic[7] = "f_infinity in component L_type_Ca_current_f_gate (dimensionless)" legend_algebraic[18] = "tau_f in component L_type_Ca_current_f_gate (millisecond)" legend_algebraic[8] = "d_infinity in component L_type_Ca_current_d_gate (dimensionless)" legend_algebraic[22] = "tau_d in component L_type_Ca_current_d_gate (millisecond)" legend_algebraic[19] = "E0_m in component L_type_Ca_current_d_gate (millivolt)" legend_constants[54] = "tau_f_Ca in component L_type_Ca_current_f_Ca_gate (millisecond)" legend_algebraic[9] = "f_Ca_infinity in component L_type_Ca_current_f_Ca_gate (dimensionless)" legend_constants[38] = "K_mfCa in component L_type_Ca_current_f_Ca_gate (micromolar)" legend_algebraic[45] = "beta_i in component calcium_dynamics (dimensionless)" legend_constants[39] = "K_mCMDN in component calcium_dynamics (micromolar)" legend_constants[40] = "CMDN_tot in component calcium_dynamics (micromolar)" legend_constants[41] = "V_myo in component calcium_dynamics (microlitre)" legend_constants[42] = "A_Cap in component calcium_dynamics (cm2)" legend_algebraic[43] = "J_rel in component calcium_dynamics (micromolar_per_millisecond)" legend_algebraic[44] = "J_leak in component calcium_dynamics (micromolar_per_millisecond)" legend_algebraic[41] = "J_up in component calcium_dynamics (micromolar_per_millisecond)" legend_states[12] = "Ca_SR in component calcium_dynamics (micromolar)" legend_constants[43] = "P_rel in component calcium_dynamics (per_millisecond)" legend_constants[44] = "P_leak in component calcium_dynamics (per_millisecond)" legend_constants[45] = "K_mCSQN in component calcium_dynamics (micromolar)" legend_constants[46] = "CSQN_tot in component calcium_dynamics (micromolar)" legend_constants[47] = "V_SR in component calcium_dynamics (microlitre)" legend_constants[48] = "V_up in component calcium_dynamics (micromolar_per_millisecond)" legend_constants[49] = "K_mup in component calcium_dynamics (micromolar)" legend_algebraic[42] = "gamma in component calcium_dynamics (dimensionless)" legend_algebraic[46] = "beta_SR in component calcium_dynamics (dimensionless)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[1] = "d/dt m in component fast_sodium_current_m_gate (dimensionless)" legend_rates[2] = "d/dt h in component fast_sodium_current_h_gate (dimensionless)" legend_rates[3] = "d/dt j in component fast_sodium_current_j_gate (dimensionless)" legend_rates[4] = "d/dt X_kr in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless)" legend_rates[5] = "d/dt X_ks in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (dimensionless)" legend_rates[6] = "d/dt X_to in component transient_outward_potassium_current_X_to_gate (dimensionless)" legend_rates[7] = "d/dt Y_to in component transient_outward_potassium_current_Y_to_gate (dimensionless)" legend_rates[9] = "d/dt f in component L_type_Ca_current_f_gate (dimensionless)" legend_rates[10] = "d/dt d in component L_type_Ca_current_d_gate (dimensionless)" legend_rates[11] = "d/dt f_Ca in component L_type_Ca_current_f_Ca_gate (dimensionless)" legend_rates[12] = "d/dt Ca_SR in component calcium_dynamics (micromolar)" legend_rates[8] = "d/dt Ca_i in component calcium_dynamics (micromolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -94.7 constants[0] = 8.314 constants[1] = 310 constants[2] = 96.5 constants[3] = 50 constants[4] = 9000 constants[5] = 1000 constants[6] = 1 constants[7] = -80 constants[8] = 12.8 constants[9] = 138 constants[10] = 10 states[1] = 0.00024676 states[2] = 0.99869 states[3] = 0.99887 constants[11] = 0 constants[12] = 0 constants[13] = 2.8 constants[14] = 13 constants[15] = 4 constants[16] = 0.0136 constants[17] = 149.4 states[4] = 0.229 constants[18] = 0.0245 states[5] = 0.0001 constants[19] = 0.23815 states[6] = 0.00003742 states[7] = 1 constants[20] = 0.002216 constants[21] = 0.693 constants[22] = 10 constants[23] = 1.5 constants[24] = 1380 constants[25] = 87.5 constants[26] = 1500 constants[27] = 0.2 constants[28] = 0.35 states[8] = 0.0472 constants[29] = 2000 constants[30] = 0.05 constants[31] = 0.05 constants[32] = 0.0003842 constants[33] = 0.0031 constants[34] = 0.0000226 constants[35] = 0.000000579 constants[36] = -0.265 constants[37] = 1 states[9] = 0.983 states[10] = 0.0001 states[11] = 0.942 constants[38] = 0.18 constants[39] = 2 constants[40] = 10 constants[41] = 0.00002584 constants[42] = 0.0001534 states[12] = 320 constants[43] = 6 constants[44] = 0.000001 constants[45] = 600 constants[46] = 10000 constants[47] = 0.000002 constants[48] = 0.1 constants[49] = 0.32 constants[50] = ((constants[0]*constants[1])/constants[2])*log(constants[9]/constants[10]) constants[51] = ((constants[0]*constants[1])/constants[2])*log(constants[15]/constants[17]) constants[52] = ((constants[0]*constants[1])/constants[2])*log((constants[15]+0.0183300*constants[9])/(constants[17]+0.0183300*constants[10])) constants[53] = (1.00000/7.00000)*(exp(constants[9]/67.3000)-1.00000) constants[54] = 30.0000 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[9] = 1.00000/(1.00000+power(states[8]/constants[38], 3.00000)) rates[11] = (algebraic[9]-states[11])/constants[54] algebraic[1] = 0.135000*exp(((states[0]+80.0000)-constants[11])/-6.80000) algebraic[12] = 7.50000/(1.00000+exp(-0.100000*((states[0]+11.0000)-constants[11]))) rates[2] = algebraic[1]*(1.00000-states[2])-algebraic[12]*states[2] algebraic[2] = (0.175000*exp(((states[0]+100.000)-constants[12])/-23.0000))/(1.00000+exp(0.150000*((states[0]+79.0000)-constants[12]))) algebraic[13] = 0.300000/(1.00000+exp(-0.100000*((states[0]+32.0000)-constants[12]))) rates[3] = algebraic[2]*(1.00000-states[3])-algebraic[13]*states[3] algebraic[3] = 1.00000/(1.00000+exp(-2.18200-0.181900*states[0])) algebraic[14] = 43.0000+1.00000/(exp(-5.49500+0.169100*states[0])+exp(-7.67700-0.0128000*states[0])) rates[4] = (algebraic[3]-states[4])/algebraic[14] algebraic[15] = 1.00000/((7.19000e-05*(states[0]-10.0000))/(1.00000-exp(-0.148000*(states[0]-10.0000)))+(0.000131000*(states[0]-10.0000))/(exp(0.0687000*(states[0]-10.0000))-1.00000)) algebraic[4] = 1.00000/(1.00000+exp((states[0]-16.0000)/-13.6000)) rates[5] = (algebraic[4]-states[5])/algebraic[15] algebraic[5] = 0.0451600*exp(0.0357700*states[0]) algebraic[16] = 0.0989000*exp(-0.0623700*states[0]) rates[6] = algebraic[5]*(1.00000-states[6])-algebraic[16]*states[6] algebraic[6] = (0.00541500*exp((states[0]+33.5000)/-5.00000))/(1.00000+0.0513350*exp((states[0]+33.5000)/-5.00000)) algebraic[17] = (0.00541500*exp((states[0]+33.5000)/5.00000))/(1.00000+0.0513350*exp((states[0]+33.5000)/5.00000)) rates[7] = algebraic[6]*(1.00000-states[7])-algebraic[17]*states[7] algebraic[7] = 1.00000/(1.00000+exp((states[0]+12.5000)/5.00000)) algebraic[18] = 30.0000+200.000/(1.00000+exp((states[0]+20.0000)/9.50000)) rates[9] = (algebraic[7]-states[9])/algebraic[18] algebraic[0] = states[0]+47.1300 algebraic[11] = (0.320000*algebraic[0])/(1.00000-exp(-0.100000*algebraic[0])) algebraic[21] = 0.0800000*exp(-states[0]/11.0000) rates[1] = algebraic[11]*(1.00000-states[1])-algebraic[21]*states[1] algebraic[8] = 1.00000/(1.00000+exp((states[0]+10.0000)/-6.24000)) algebraic[19] = states[0]+40.0000 algebraic[22] = 1.00000/((0.250000*exp(-0.0100000*states[0]))/(1.00000+exp(-0.0700000*states[0]))+(0.0700000*exp(-0.0500000*algebraic[19]))/(1.00000+exp(0.0500000*algebraic[19]))) rates[10] = (algebraic[8]-states[10])/algebraic[22] algebraic[20] = constants[8]*(power(states[1], 3.00000))*states[2]*states[3]*(states[0]-constants[50]) algebraic[38] = ((((constants[34]/constants[37])*4.00000*states[0]*(power(constants[2], 2.00000)))/(constants[0]*constants[1]))*(states[8]*exp((2.00000*states[0]*constants[2])/(constants[0]*constants[1]))-0.341000*constants[29]))/(exp((2.00000*states[0]*constants[2])/(constants[0]*constants[1]))-1.00000) algebraic[39] = algebraic[38]*states[9]*states[10]*states[11] algebraic[40] = ((((((constants[35]/constants[37])*states[9]*states[10]*states[11])/(1.00000+algebraic[38]/constants[36]))*1000.00*states[0]*(power(constants[2], 2.00000)))/(constants[0]*constants[1]))*(constants[17]*exp((states[0]*constants[2])/(constants[0]*constants[1]))-constants[15]))/(exp((states[0]*constants[2])/(constants[0]*constants[1]))-1.00000) algebraic[25] = 1.00000/(1.00000+2.50000*exp(0.100000*(states[0]+28.0000))) algebraic[26] = constants[16]*algebraic[25]*states[4]*(power(constants[15]/4.00000, 1.0/2))*(states[0]-constants[51]) algebraic[27] = constants[18]*(power(states[5], 2.00000))*(states[0]-constants[52]) algebraic[28] = constants[19]*states[6]*states[7]*(states[0]-constants[51]) algebraic[23] = 1.00000/(2.00000+exp(((1.62000*constants[2])/(constants[0]*constants[1]))*(states[0]-constants[51]))) algebraic[24] = ((constants[13]*algebraic[23]*constants[15])/(constants[15]+constants[14]))*(states[0]-constants[51]) algebraic[29] = 1.00000/(1.00000+exp((7.48800-states[0])/5.98000)) algebraic[30] = constants[20]*algebraic[29]*(states[0]-constants[51]) algebraic[33] = (constants[26]/((power(constants[25], 3.00000)+power(constants[9], 3.00000))*(constants[24]+constants[29])*(1.00000+constants[27]*exp(((constants[28]-1.00000)*states[0]*constants[2])/(constants[0]*constants[1])))))*(exp((constants[28]*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[10], 3.00000))*constants[29]-exp(((constants[28]-1.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[9], 3.00000))*states[8]) algebraic[31] = 1.00000/(1.00000+0.124500*exp((-0.100000*states[0]*constants[2])/(constants[0]*constants[1]))+0.0365000*constants[53]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[32] = (((constants[21]*algebraic[31])/(1.00000+power(constants[22]/constants[10], 1.50000)))*constants[15])/(constants[15]+constants[23]) algebraic[34] = (constants[31]*states[8])/(constants[30]+states[8]) algebraic[35] = ((constants[0]*constants[1])/(2.00000*constants[2]))*log(constants[29]/states[8]) algebraic[36] = constants[32]*(states[0]-algebraic[35]) algebraic[37] = constants[33]*(states[0]-constants[50]) algebraic[10] = custom_piecewise([greater_equal(voi , constants[3]) & less_equal(voi , constants[4]) & less_equal((voi-constants[3])-floor((voi-constants[3])/constants[5])*constants[5] , constants[6]), constants[7] , True, 0.00000]) rates[0] = -(algebraic[20]+algebraic[39]+algebraic[40]+algebraic[26]+algebraic[27]+algebraic[28]+algebraic[24]+algebraic[30]+algebraic[33]+algebraic[32]+algebraic[34]+algebraic[37]+algebraic[36]+algebraic[10]) algebraic[42] = 1.00000/(1.00000+power(2000.00/states[12], 3.00000)) algebraic[43] = (constants[43]*states[9]*states[10]*states[11]*(algebraic[42]*states[12]-states[8]))/(1.00000+1.65000*exp(states[0]/20.0000)) algebraic[44] = constants[44]*(states[12]-states[8]) algebraic[41] = constants[48]/(1.00000+power(constants[49]/states[8], 2.00000)) algebraic[46] = 1.00000/(1.00000+(constants[46]*constants[45])/(power(constants[45]+states[12], 2.00000))) rates[12] = (algebraic[46]*((algebraic[41]-algebraic[44])-algebraic[43])*constants[41])/constants[47] algebraic[45] = 1.00000/(1.00000+(constants[40]*constants[39])/(power(constants[39]+states[8], 2.00000))) rates[8] = algebraic[45]*(((algebraic[43]+algebraic[44])-algebraic[41])-((constants[42]*constants[37])/(2.00000*constants[2]*constants[41]))*((algebraic[39]+algebraic[36]+algebraic[34])-2.00000*algebraic[33])) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[9] = 1.00000/(1.00000+power(states[8]/constants[38], 3.00000)) algebraic[1] = 0.135000*exp(((states[0]+80.0000)-constants[11])/-6.80000) algebraic[12] = 7.50000/(1.00000+exp(-0.100000*((states[0]+11.0000)-constants[11]))) algebraic[2] = (0.175000*exp(((states[0]+100.000)-constants[12])/-23.0000))/(1.00000+exp(0.150000*((states[0]+79.0000)-constants[12]))) algebraic[13] = 0.300000/(1.00000+exp(-0.100000*((states[0]+32.0000)-constants[12]))) algebraic[3] = 1.00000/(1.00000+exp(-2.18200-0.181900*states[0])) algebraic[14] = 43.0000+1.00000/(exp(-5.49500+0.169100*states[0])+exp(-7.67700-0.0128000*states[0])) algebraic[15] = 1.00000/((7.19000e-05*(states[0]-10.0000))/(1.00000-exp(-0.148000*(states[0]-10.0000)))+(0.000131000*(states[0]-10.0000))/(exp(0.0687000*(states[0]-10.0000))-1.00000)) algebraic[4] = 1.00000/(1.00000+exp((states[0]-16.0000)/-13.6000)) algebraic[5] = 0.0451600*exp(0.0357700*states[0]) algebraic[16] = 0.0989000*exp(-0.0623700*states[0]) algebraic[6] = (0.00541500*exp((states[0]+33.5000)/-5.00000))/(1.00000+0.0513350*exp((states[0]+33.5000)/-5.00000)) algebraic[17] = (0.00541500*exp((states[0]+33.5000)/5.00000))/(1.00000+0.0513350*exp((states[0]+33.5000)/5.00000)) algebraic[7] = 1.00000/(1.00000+exp((states[0]+12.5000)/5.00000)) algebraic[18] = 30.0000+200.000/(1.00000+exp((states[0]+20.0000)/9.50000)) algebraic[0] = states[0]+47.1300 algebraic[11] = (0.320000*algebraic[0])/(1.00000-exp(-0.100000*algebraic[0])) algebraic[21] = 0.0800000*exp(-states[0]/11.0000) algebraic[8] = 1.00000/(1.00000+exp((states[0]+10.0000)/-6.24000)) algebraic[19] = states[0]+40.0000 algebraic[22] = 1.00000/((0.250000*exp(-0.0100000*states[0]))/(1.00000+exp(-0.0700000*states[0]))+(0.0700000*exp(-0.0500000*algebraic[19]))/(1.00000+exp(0.0500000*algebraic[19]))) algebraic[20] = constants[8]*(power(states[1], 3.00000))*states[2]*states[3]*(states[0]-constants[50]) algebraic[38] = ((((constants[34]/constants[37])*4.00000*states[0]*(power(constants[2], 2.00000)))/(constants[0]*constants[1]))*(states[8]*exp((2.00000*states[0]*constants[2])/(constants[0]*constants[1]))-0.341000*constants[29]))/(exp((2.00000*states[0]*constants[2])/(constants[0]*constants[1]))-1.00000) algebraic[39] = algebraic[38]*states[9]*states[10]*states[11] algebraic[40] = ((((((constants[35]/constants[37])*states[9]*states[10]*states[11])/(1.00000+algebraic[38]/constants[36]))*1000.00*states[0]*(power(constants[2], 2.00000)))/(constants[0]*constants[1]))*(constants[17]*exp((states[0]*constants[2])/(constants[0]*constants[1]))-constants[15]))/(exp((states[0]*constants[2])/(constants[0]*constants[1]))-1.00000) algebraic[25] = 1.00000/(1.00000+2.50000*exp(0.100000*(states[0]+28.0000))) algebraic[26] = constants[16]*algebraic[25]*states[4]*(power(constants[15]/4.00000, 1.0/2))*(states[0]-constants[51]) algebraic[27] = constants[18]*(power(states[5], 2.00000))*(states[0]-constants[52]) algebraic[28] = constants[19]*states[6]*states[7]*(states[0]-constants[51]) algebraic[23] = 1.00000/(2.00000+exp(((1.62000*constants[2])/(constants[0]*constants[1]))*(states[0]-constants[51]))) algebraic[24] = ((constants[13]*algebraic[23]*constants[15])/(constants[15]+constants[14]))*(states[0]-constants[51]) algebraic[29] = 1.00000/(1.00000+exp((7.48800-states[0])/5.98000)) algebraic[30] = constants[20]*algebraic[29]*(states[0]-constants[51]) algebraic[33] = (constants[26]/((power(constants[25], 3.00000)+power(constants[9], 3.00000))*(constants[24]+constants[29])*(1.00000+constants[27]*exp(((constants[28]-1.00000)*states[0]*constants[2])/(constants[0]*constants[1])))))*(exp((constants[28]*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[10], 3.00000))*constants[29]-exp(((constants[28]-1.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[9], 3.00000))*states[8]) algebraic[31] = 1.00000/(1.00000+0.124500*exp((-0.100000*states[0]*constants[2])/(constants[0]*constants[1]))+0.0365000*constants[53]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[32] = (((constants[21]*algebraic[31])/(1.00000+power(constants[22]/constants[10], 1.50000)))*constants[15])/(constants[15]+constants[23]) algebraic[34] = (constants[31]*states[8])/(constants[30]+states[8]) algebraic[35] = ((constants[0]*constants[1])/(2.00000*constants[2]))*log(constants[29]/states[8]) algebraic[36] = constants[32]*(states[0]-algebraic[35]) algebraic[37] = constants[33]*(states[0]-constants[50]) algebraic[10] = custom_piecewise([greater_equal(voi , constants[3]) & less_equal(voi , constants[4]) & less_equal((voi-constants[3])-floor((voi-constants[3])/constants[5])*constants[5] , constants[6]), constants[7] , True, 0.00000]) algebraic[42] = 1.00000/(1.00000+power(2000.00/states[12], 3.00000)) algebraic[43] = (constants[43]*states[9]*states[10]*states[11]*(algebraic[42]*states[12]-states[8]))/(1.00000+1.65000*exp(states[0]/20.0000)) algebraic[44] = constants[44]*(states[12]-states[8]) algebraic[41] = constants[48]/(1.00000+power(constants[49]/states[8], 2.00000)) algebraic[46] = 1.00000/(1.00000+(constants[46]*constants[45])/(power(constants[45]+states[12], 2.00000))) algebraic[45] = 1.00000/(1.00000+(constants[40]*constants[39])/(power(constants[39]+states[8], 2.00000))) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)