Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 41 entries in the algebraic variable array.
   There are a total of 16 entries in each of the rate and state variable arrays.
   There are a total of 54 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[49] is RTONF in component membrane (millivolt).
 * CONSTANTS[3] is C_m in component membrane (microF).
 * ALGEBRAIC[18] is i_b_K in component potassium_background_current (nanoA).
 * ALGEBRAIC[19] is i_K1 in component time_independent_potassium_current (nanoA).
 * ALGEBRAIC[9] is i_to in component transient_outward_current (nanoA).
 * ALGEBRAIC[14] is i_b_Na in component sodium_background_current (nanoA).
 * ALGEBRAIC[16] is i_b_Ca in component calcium_background_current (nanoA).
 * ALGEBRAIC[12] is i_NaK in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[17] is i_NaCa in component Na_Ca_exchanger (nanoA).
 * ALGEBRAIC[2] is i_Na in component fast_sodium_current (nanoA).
 * ALGEBRAIC[40] is i_Ca_L in component L_type_calcium_current (nanoA).
 * ALGEBRAIC[0] is i_Stim in component membrane (nanoA).
 * CONSTANTS[4] is stim_start in component membrane (second).
 * CONSTANTS[5] is stim_end in component membrane (second).
 * CONSTANTS[6] is stim_period in component membrane (second).
 * CONSTANTS[7] is stim_duration in component membrane (second).
 * CONSTANTS[8] is stim_amplitude in component membrane (nanoA).
 * CONSTANTS[9] is g_Na in component fast_sodium_current (microS).
 * ALGEBRAIC[1] is E_mh in component fast_sodium_current (millivolt).
 * CONSTANTS[10] is Na_o in component extracellular_sodium_concentration (millimolar).
 * STATES[1] is Na_i in component intracellular_sodium_concentration (millimolar).
 * CONSTANTS[11] is K_c in component extracellular_potassium_concentration (millimolar).
 * STATES[2] is K_i in component intracellular_potassium_concentration (millimolar).
 * STATES[3] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[4] is h in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[4] is alpha_m in component fast_sodium_current_m_gate (per_second).
 * ALGEBRAIC[5] is beta_m in component fast_sodium_current_m_gate (per_second).
 * CONSTANTS[12] is delta_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[3] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[6] is alpha_h in component fast_sodium_current_h_gate (per_second).
 * ALGEBRAIC[7] is beta_h in component fast_sodium_current_h_gate (per_second).
 * CONSTANTS[13] is g_to in component transient_outward_current (microS).
 * ALGEBRAIC[8] is E_K in component transient_outward_current (millivolt).
 * CONSTANTS[14] is g_to_s in component transient_outward_current (dimensionless).
 * STATES[5] is r in component transient_outward_current_r_gate (dimensionless).
 * STATES[6] is s in component transient_outward_current_s_gate (dimensionless).
 * ALGEBRAIC[10] is alpha_s in component transient_outward_current_s_gate (per_second).
 * ALGEBRAIC[11] is beta_s in component transient_outward_current_s_gate (per_second).
 * CONSTANTS[15] is i_NaK_max in component sodium_potassium_pump (nanoA).
 * CONSTANTS[16] is K_mK in component sodium_potassium_pump (millimolar).
 * CONSTANTS[17] is K_mNa in component sodium_potassium_pump (millimolar).
 * ALGEBRAIC[13] is E_Na in component sodium_background_current (millivolt).
 * CONSTANTS[18] is g_b_Na in component sodium_background_current (microS).
 * ALGEBRAIC[15] is E_Ca in component calcium_background_current (millivolt).
 * CONSTANTS[19] is g_b_Ca in component calcium_background_current (microS).
 * CONSTANTS[20] is Ca_o in component extracellular_calcium_concentration (millimolar).
 * STATES[7] is Ca_i in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[21] is k_NaCa in component Na_Ca_exchanger (nanoA).
 * CONSTANTS[22] is n_NaCa in component Na_Ca_exchanger (dimensionless).
 * CONSTANTS[23] is d_NaCa in component Na_Ca_exchanger (dimensionless).
 * CONSTANTS[24] is gamma in component Na_Ca_exchanger (dimensionless).
 * CONSTANTS[25] is g_b_K in component potassium_background_current (microS).
 * CONSTANTS[26] is g_K1 in component time_independent_potassium_current (microS).
 * CONSTANTS[27] is K_m_K1 in component time_independent_potassium_current (millimolar).
 * ALGEBRAIC[37] is i_Ca_L_Ca in component L_type_calcium_current (nanoA).
 * ALGEBRAIC[38] is i_Ca_L_K in component L_type_calcium_current (nanoA).
 * ALGEBRAIC[39] is i_Ca_L_Na in component L_type_calcium_current (nanoA).
 * CONSTANTS[28] is P_Ca_L in component L_type_calcium_current (nanoA_per_millimolar).
 * STATES[8] is d in component L_type_calcium_current_d_gate (dimensionless).
 * STATES[9] is f_Ca in component L_type_calcium_current_f_Ca_gate (dimensionless).
 * ALGEBRAIC[27] is CaChon in component L_type_calcium_current_f_Ca_gate (dimensionless).
 * ALGEBRAIC[21] is alpha_d in component L_type_calcium_current_d_gate (per_second).
 * ALGEBRAIC[22] is beta_d in component L_type_calcium_current_d_gate (per_second).
 * ALGEBRAIC[20] is E0_d in component L_type_calcium_current_d_gate (millivolt).
 * ALGEBRAIC[24] is alpha_f_Ca in component L_type_calcium_current_f_Ca_gate (per_second).
 * ALGEBRAIC[25] is beta_f_Ca in component L_type_calcium_current_f_Ca_gate (per_second).
 * ALGEBRAIC[26] is CaChoff in component L_type_calcium_current_f_Ca_gate (dimensionless).
 * ALGEBRAIC[23] is E0_f in component L_type_calcium_current_f_Ca_gate (millivolt).
 * ALGEBRAIC[29] is i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[51] is K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * ALGEBRAIC[28] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[29] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[30] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * CONSTANTS[31] is K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[32] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[33] is beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * STATES[10] is Ca_up in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[35] is i_rel in component calcium_release (millimolar_per_second).
 * ALGEBRAIC[31] is VoltDep in component calcium_release (dimensionless).
 * ALGEBRAIC[32] is RegBindSite in component calcium_release (dimensionless).
 * ALGEBRAIC[33] is ActRate in component calcium_release (per_second).
 * ALGEBRAIC[34] is InactRate in component calcium_release (per_second).
 * CONSTANTS[34] is K_leak_rate in component calcium_release (per_second).
 * CONSTANTS[35] is K_m_rel in component calcium_release (per_second).
 * ALGEBRAIC[30] is PrecFrac in component calcium_release (dimensionless).
 * STATES[11] is ActFrac in component calcium_release (dimensionless).
 * STATES[12] is ProdFrac in component calcium_release (dimensionless).
 * CONSTANTS[36] is ProdFracRate in component calcium_release (per_second).
 * STATES[13] is Ca_rel in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[36] is i_trans in component calcium_translocation (millimolar_per_second).
 * CONSTANTS[37] is alpha_tr in component calcium_translocation (per_second).
 * CONSTANTS[53] is V_i in component intracellular_calcium_concentration (micrometre3).
 * STATES[14] is Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * STATES[15] is Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[38] is Calmod in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[39] is Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[40] is alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[41] is beta_Calmod in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[42] is alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[43] is beta_Trop in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[44] is radius in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[45] is length in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[50] is V_Cell in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[52] is V_i_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[46] is V_rel_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[47] is V_e_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[48] is V_up_ratio in component intracellular_calcium_concentration (dimensionless).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[3] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[4] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[5] is d/dt r in component transient_outward_current_r_gate (dimensionless).
 * RATES[6] is d/dt s in component transient_outward_current_s_gate (dimensionless).
 * RATES[8] is d/dt d in component L_type_calcium_current_d_gate (dimensionless).
 * RATES[9] is d/dt f_Ca in component L_type_calcium_current_f_Ca_gate (dimensionless).
 * RATES[11] is d/dt ActFrac in component calcium_release (dimensionless).
 * RATES[12] is d/dt ProdFrac in component calcium_release (dimensionless).
 * RATES[1] is d/dt Na_i in component intracellular_sodium_concentration (millimolar).
 * RATES[2] is d/dt K_i in component intracellular_potassium_concentration (millimolar).
 * RATES[7] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar).
 * RATES[14] is d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * RATES[15] is d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * RATES[10] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar).
 * RATES[13] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar).
 * There are a total of 7 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -91.6;
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 4e-5;
CONSTANTS[4] = 0.1;
CONSTANTS[5] = 100000;
CONSTANTS[6] = 1;
CONSTANTS[7] = 0.002;
CONSTANTS[8] = -1.3;
CONSTANTS[9] = 0.5;
CONSTANTS[10] = 140;
STATES[1] = 6.48;
CONSTANTS[11] = 4;
STATES[2] = 140;
STATES[3] = 0.076;
STATES[4] = 0.015;
CONSTANTS[12] = 1e-5;
CONSTANTS[13] = 0.01;
CONSTANTS[14] = 0;
STATES[5] = 0;
STATES[6] = 1;
CONSTANTS[15] = 0.14;
CONSTANTS[16] = 1;
CONSTANTS[17] = 40;
CONSTANTS[18] = 0.00012;
CONSTANTS[19] = 5e-5;
CONSTANTS[20] = 2;
STATES[7] = 1e-5;
CONSTANTS[21] = 0.0001;
CONSTANTS[22] = 3;
CONSTANTS[23] = 0.0001;
CONSTANTS[24] = 0.5;
CONSTANTS[25] = 0.0017;
CONSTANTS[26] = 0.017;
CONSTANTS[27] = 10;
CONSTANTS[28] = 0.05;
STATES[8] = 0.0011;
STATES[9] = 0.785;
CONSTANTS[29] = 0.0003;
CONSTANTS[30] = 0.4;
CONSTANTS[31] = 0.5;
CONSTANTS[32] = 3;
CONSTANTS[33] = 0.23;
STATES[10] = 0.3;
CONSTANTS[34] = 0;
CONSTANTS[35] = 250;
STATES[11] = 0;
STATES[12] = 0;
CONSTANTS[36] = 1;
STATES[13] = 0.3;
CONSTANTS[37] = 50;
STATES[14] = 0.0005;
STATES[15] = 0.0015;
CONSTANTS[38] = 0.02;
CONSTANTS[39] = 0.15;
CONSTANTS[40] = 100000;
CONSTANTS[41] = 50;
CONSTANTS[42] = 100000;
CONSTANTS[43] = 200;
CONSTANTS[44] = 0.01;
CONSTANTS[45] = 0.08;
CONSTANTS[46] = 0.1;
CONSTANTS[47] = 0.4;
CONSTANTS[48] = 0.01;
CONSTANTS[49] = ( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2];
CONSTANTS[50] =  3.14159*pow(CONSTANTS[44], 2.00000)*CONSTANTS[45];
CONSTANTS[51] = ( CONSTANTS[29]*CONSTANTS[30])/CONSTANTS[31];
CONSTANTS[52] = ((1.00000 - CONSTANTS[47]) - CONSTANTS[48]) - CONSTANTS[46];
CONSTANTS[53] =  CONSTANTS[50]*CONSTANTS[52];
RATES[0] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[1] = 0.1001;
RATES[2] = 0.1001;
RATES[7] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[10] = 0.1001;
RATES[13] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[18]+ALGEBRAIC[19]+ALGEBRAIC[9]+ALGEBRAIC[14]+ALGEBRAIC[16]+ALGEBRAIC[12]+ALGEBRAIC[17]+ALGEBRAIC[2]+ALGEBRAIC[40]);
resid[1] = RATES[3] -  ALGEBRAIC[4]*(1.00000 - STATES[3]) -  ALGEBRAIC[5]*STATES[3];
resid[2] = RATES[4] -  ALGEBRAIC[6]*(1.00000 - STATES[4]) -  ALGEBRAIC[7]*STATES[4];
resid[3] = RATES[5] -  333.000*(1.00000/(1.00000+exp(- (STATES[0]+4.00000)/5.00000)) - STATES[5]);
resid[4] = RATES[6] -  ALGEBRAIC[10]*(1.00000 - STATES[6]) -  ALGEBRAIC[11]*STATES[6];
resid[5] = RATES[8] -  ALGEBRAIC[21]*(1.00000 - STATES[8]) -  ALGEBRAIC[22]*STATES[8];
resid[6] = RATES[9] -  ( 120.000*(1.00000 - STATES[9])*ALGEBRAIC[26]+ (1.00000 - STATES[9])*(1.00000 - ALGEBRAIC[26]))*ALGEBRAIC[25] -  ALGEBRAIC[24]*STATES[9];
resid[7] = RATES[11] -  ALGEBRAIC[30]*ALGEBRAIC[33] -  STATES[11]*ALGEBRAIC[34];
resid[8] = RATES[12] -  STATES[11]*ALGEBRAIC[34] -  CONSTANTS[36]*STATES[12];
resid[9] = RATES[1] -  (- 1.00000/( 1.00000*CONSTANTS[53]*CONSTANTS[2]))*(ALGEBRAIC[2]+ALGEBRAIC[14]+ 3.00000*ALGEBRAIC[12]+ 3.00000*ALGEBRAIC[17]+ALGEBRAIC[39]);
resid[10] = RATES[2] -  (- 1.00000/( 1.00000*CONSTANTS[53]*CONSTANTS[2]))*((ALGEBRAIC[19]+ALGEBRAIC[38]+ALGEBRAIC[9]+ALGEBRAIC[18]) -  2.00000*ALGEBRAIC[12]);
resid[11] = RATES[7] - ((( (- 1.00000/( 2.00000*1.00000*CONSTANTS[53]*CONSTANTS[2]))*((ALGEBRAIC[37]+ALGEBRAIC[16]) -  2.00000*ALGEBRAIC[17])+( ALGEBRAIC[35]*CONSTANTS[46])/CONSTANTS[52]) - RATES[14]) - RATES[15]) - ALGEBRAIC[29];
resid[12] = RATES[10] -  (CONSTANTS[52]/CONSTANTS[48])*ALGEBRAIC[29] - ALGEBRAIC[36];
resid[13] = RATES[13] -  (CONSTANTS[48]/CONSTANTS[46])*ALGEBRAIC[36] - ALGEBRAIC[35];
resid[14] = RATES[14] -  CONSTANTS[40]*STATES[7]*(CONSTANTS[38] - STATES[14]) -  CONSTANTS[41]*STATES[14];
resid[15] = RATES[15] -  CONSTANTS[42]*STATES[7]*(CONSTANTS[39] - STATES[15]) -  CONSTANTS[43]*STATES[15];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[1] =  CONSTANTS[49]*log((CONSTANTS[10]+ 0.120000*CONSTANTS[11])/(STATES[1]+ 0.120000*STATES[2]));
ALGEBRAIC[2] =  CONSTANTS[9]*pow(STATES[3], 3.00000)*STATES[4]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[3] = STATES[0]+41.0000;
ALGEBRAIC[4] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[3])/(1.00000 - exp( - 0.100000*ALGEBRAIC[3])));
ALGEBRAIC[5] =  8000.00*exp( - 0.0560000*(STATES[0]+66.0000));
ALGEBRAIC[6] =  20.0000*exp( - 0.125000*(STATES[0]+75.0000));
ALGEBRAIC[7] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*(STATES[0]+75.0000)));
ALGEBRAIC[8] =  CONSTANTS[49]*log(CONSTANTS[11]/STATES[2]);
ALGEBRAIC[9] =  CONSTANTS[13]*(CONSTANTS[14]+ STATES[6]*(1.00000 - CONSTANTS[14]))*STATES[5]*(STATES[0] - ALGEBRAIC[8]);
ALGEBRAIC[10] =  0.0330000*exp(- STATES[0]/17.0000);
ALGEBRAIC[11] = 33.0000/(1.00000+exp( - 0.125000*(STATES[0]+10.0000)));
ALGEBRAIC[12] = ( (( CONSTANTS[15]*CONSTANTS[11])/(CONSTANTS[16]+CONSTANTS[11]))*STATES[1])/(CONSTANTS[17]+STATES[1]);
ALGEBRAIC[13] =  CONSTANTS[49]*log(CONSTANTS[10]/STATES[1]);
ALGEBRAIC[14] =  CONSTANTS[18]*(STATES[0] - ALGEBRAIC[13]);
ALGEBRAIC[15] =  0.500000*CONSTANTS[49]*log(CONSTANTS[20]/STATES[7]);
ALGEBRAIC[16] =  CONSTANTS[19]*(STATES[0] - ALGEBRAIC[15]);
ALGEBRAIC[17] = ( CONSTANTS[21]*( exp(( CONSTANTS[24]*(CONSTANTS[22] - 2.00000)*STATES[0])/CONSTANTS[49])*pow(STATES[1], CONSTANTS[22])*CONSTANTS[20] -  exp(( (CONSTANTS[24] - 1.00000)*(CONSTANTS[22] - 2.00000)*STATES[0])/CONSTANTS[49])*pow(CONSTANTS[10], CONSTANTS[22])*STATES[7]))/( (1.00000+ CONSTANTS[23]*( STATES[7]*pow(CONSTANTS[10], CONSTANTS[22])+ CONSTANTS[20]*pow(STATES[1], CONSTANTS[22])))*(1.00000+STATES[7]/0.00690000));
ALGEBRAIC[18] =  CONSTANTS[25]*(STATES[0] - ALGEBRAIC[8]);
ALGEBRAIC[19] = ( (( CONSTANTS[26]*CONSTANTS[11])/(CONSTANTS[11]+CONSTANTS[27]))*(STATES[0] - ALGEBRAIC[8]))/(1.00000+exp(( ((STATES[0] - ALGEBRAIC[8]) - 10.0000)*2.00000)/CONSTANTS[49]));
ALGEBRAIC[20] = STATES[0]+19.0000;
ALGEBRAIC[21] = (CONDVAR[4]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[20])/(1.00000 - exp(- ALGEBRAIC[20]/4.00000)));
ALGEBRAIC[22] = (CONDVAR[5]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[20])/(exp(ALGEBRAIC[20]/10.0000) - 1.00000));
ALGEBRAIC[23] = STATES[0]+34.0000;
ALGEBRAIC[24] = (CONDVAR[6]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[23])/(exp(ALGEBRAIC[23]/4.00000) - 1.00000));
ALGEBRAIC[25] = 12.0000/(1.00000+exp(- ALGEBRAIC[23]/4.00000));
ALGEBRAIC[26] = STATES[7]/(0.00100000+STATES[7]);
ALGEBRAIC[28] = STATES[7]+ STATES[10]*CONSTANTS[51]+ CONSTANTS[29]*CONSTANTS[30]+CONSTANTS[29];
ALGEBRAIC[29] =  (STATES[7]/ALGEBRAIC[28])*CONSTANTS[32] -  (( STATES[10]*CONSTANTS[51])/ALGEBRAIC[28])*CONSTANTS[33];
ALGEBRAIC[30] = (1.00000 - STATES[11]) - STATES[12];
ALGEBRAIC[31] = exp( 0.0800000*(STATES[0] - 40.0000));
ALGEBRAIC[32] = pow(STATES[7]/(STATES[7]+0.000500000), 2.00000);
ALGEBRAIC[33] =  600.000*ALGEBRAIC[31]+ 500.000*ALGEBRAIC[32];
ALGEBRAIC[34] = 60.0000+ 500.000*ALGEBRAIC[32];
ALGEBRAIC[35] =  ( pow(STATES[11]/(STATES[11]+0.250000), 2.00000)*CONSTANTS[35]+CONSTANTS[34])*STATES[13];
ALGEBRAIC[36] =  (STATES[10] - STATES[13])*CONSTANTS[37];
ALGEBRAIC[27] =  (1.00000 - STATES[9])*(1.00000 - ALGEBRAIC[26]);
ALGEBRAIC[37] =  ((( 4.00000*CONSTANTS[28]*STATES[8]*ALGEBRAIC[27]*(STATES[0] - 50.0000))/CONSTANTS[49])/(1.00000 - exp(( - (STATES[0] - 50.0000)*2.00000)/CONSTANTS[49])))*( STATES[7]*exp(100.000/CONSTANTS[49]) -  CONSTANTS[20]*exp(( - (STATES[0] - 50.0000)*2.00000)/CONSTANTS[49]));
ALGEBRAIC[38] =  ((( 0.00200000*CONSTANTS[28]*STATES[8]*ALGEBRAIC[27]*(STATES[0] - 50.0000))/CONSTANTS[49])/(1.00000 - exp(- (STATES[0] - 50.0000)/CONSTANTS[49])))*( STATES[2]*exp(50.0000/CONSTANTS[49]) -  CONSTANTS[11]*exp(- (STATES[0] - 50.0000)/CONSTANTS[49]));
ALGEBRAIC[39] =  ((( 0.0100000*CONSTANTS[28]*STATES[8]*ALGEBRAIC[27]*(STATES[0] - 50.0000))/CONSTANTS[49])/(1.00000 - exp(- (STATES[0] - 50.0000)/CONSTANTS[49])))*( STATES[1]*exp(50.0000/CONSTANTS[49]) -  CONSTANTS[10]*exp(- (STATES[0] - 50.0000)/CONSTANTS[49]));
ALGEBRAIC[40] = ALGEBRAIC[37]+ALGEBRAIC[38]+ALGEBRAIC[39];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[4];
CONDVAR[1] = VOI - CONSTANTS[5];
CONDVAR[2] = ((VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7];
CONDVAR[3] = fabs(ALGEBRAIC[3]) - CONSTANTS[12];
CONDVAR[4] = fabs(ALGEBRAIC[20]) - 0.000100000;
CONDVAR[5] = fabs(ALGEBRAIC[20]) - 0.000100000;
CONDVAR[6] = fabs(ALGEBRAIC[23]) - 0.000100000;
}