# Size of variable arrays: sizeAlgebraic = 41 sizeStates = 16 sizeConstants = 54 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "R in component membrane (joule_per_kilomole_kelvin)" legend_constants[1] = "T in component membrane (kelvin)" legend_constants[2] = "F in component membrane (coulomb_per_mole)" legend_constants[49] = "RTONF in component membrane (millivolt)" legend_constants[3] = "C_m in component membrane (microF)" legend_algebraic[26] = "i_b_K in component potassium_background_current (nanoA)" legend_algebraic[27] = "i_K1 in component time_independent_potassium_current (nanoA)" legend_algebraic[18] = "i_to in component transient_outward_current (nanoA)" legend_algebraic[22] = "i_b_Na in component sodium_background_current (nanoA)" legend_algebraic[24] = "i_b_Ca in component calcium_background_current (nanoA)" legend_algebraic[20] = "i_NaK in component sodium_potassium_pump (nanoA)" legend_algebraic[25] = "i_NaCa in component Na_Ca_exchanger (nanoA)" legend_algebraic[14] = "i_Na in component fast_sodium_current (nanoA)" legend_algebraic[38] = "i_Ca_L in component L_type_calcium_current (nanoA)" legend_algebraic[4] = "i_Stim in component membrane (nanoA)" legend_constants[4] = "stim_start in component membrane (second)" legend_constants[5] = "stim_end in component membrane (second)" legend_constants[6] = "stim_period in component membrane (second)" legend_constants[7] = "stim_duration in component membrane (second)" legend_constants[8] = "stim_amplitude in component membrane (nanoA)" legend_constants[9] = "g_Na in component fast_sodium_current (microS)" legend_algebraic[10] = "E_mh in component fast_sodium_current (millivolt)" legend_constants[10] = "Na_o in component extracellular_sodium_concentration (millimolar)" legend_states[1] = "Na_i in component intracellular_sodium_concentration (millimolar)" legend_constants[11] = "K_c in component extracellular_potassium_concentration (millimolar)" legend_states[2] = "K_i in component intracellular_potassium_concentration (millimolar)" legend_states[3] = "m in component fast_sodium_current_m_gate (dimensionless)" legend_states[4] = "h in component fast_sodium_current_h_gate (dimensionless)" legend_algebraic[6] = "alpha_m in component fast_sodium_current_m_gate (per_second)" legend_algebraic[12] = "beta_m in component fast_sodium_current_m_gate (per_second)" legend_constants[12] = "delta_m in component fast_sodium_current_m_gate (millivolt)" legend_algebraic[0] = "E0_m in component fast_sodium_current_m_gate (millivolt)" legend_algebraic[1] = "alpha_h in component fast_sodium_current_h_gate (per_second)" legend_algebraic[7] = "beta_h in component fast_sodium_current_h_gate (per_second)" legend_constants[13] = "g_to in component transient_outward_current (microS)" legend_algebraic[16] = "E_K in component transient_outward_current (millivolt)" legend_constants[14] = "g_to_s in component transient_outward_current (dimensionless)" legend_states[5] = "r in component transient_outward_current_r_gate (dimensionless)" legend_states[6] = "s in component transient_outward_current_s_gate (dimensionless)" legend_algebraic[2] = "alpha_s in component transient_outward_current_s_gate (per_second)" legend_algebraic[8] = "beta_s in component transient_outward_current_s_gate (per_second)" legend_constants[15] = "i_NaK_max in component sodium_potassium_pump (nanoA)" legend_constants[16] = "K_mK in component sodium_potassium_pump (millimolar)" legend_constants[17] = "K_mNa in component sodium_potassium_pump (millimolar)" legend_algebraic[21] = "E_Na in component sodium_background_current (millivolt)" legend_constants[18] = "g_b_Na in component sodium_background_current (microS)" legend_algebraic[23] = "E_Ca in component calcium_background_current (millivolt)" legend_constants[19] = "g_b_Ca in component calcium_background_current (microS)" legend_constants[20] = "Ca_o in component extracellular_calcium_concentration (millimolar)" legend_states[7] = "Ca_i in component intracellular_calcium_concentration (millimolar)" legend_constants[21] = "k_NaCa in component Na_Ca_exchanger (nanoA)" legend_constants[22] = "n_NaCa in component Na_Ca_exchanger (dimensionless)" legend_constants[23] = "d_NaCa in component Na_Ca_exchanger (dimensionless)" legend_constants[24] = "gamma in component Na_Ca_exchanger (dimensionless)" legend_constants[25] = "g_b_K in component potassium_background_current (microS)" legend_constants[26] = "g_K1 in component time_independent_potassium_current (microS)" legend_constants[27] = "K_m_K1 in component time_independent_potassium_current (millimolar)" legend_algebraic[33] = "i_Ca_L_Ca in component L_type_calcium_current (nanoA)" legend_algebraic[34] = "i_Ca_L_K in component L_type_calcium_current (nanoA)" legend_algebraic[36] = "i_Ca_L_Na in component L_type_calcium_current (nanoA)" legend_constants[28] = "P_Ca_L in component L_type_calcium_current (nanoA_per_millimolar)" legend_states[8] = "d in component L_type_calcium_current_d_gate (dimensionless)" legend_states[9] = "f_Ca in component L_type_calcium_current_f_Ca_gate (dimensionless)" legend_algebraic[32] = "CaChon in component L_type_calcium_current_f_Ca_gate (dimensionless)" legend_algebraic[9] = "alpha_d in component L_type_calcium_current_d_gate (per_second)" legend_algebraic[13] = "beta_d in component L_type_calcium_current_d_gate (per_second)" legend_algebraic[3] = "E0_d in component L_type_calcium_current_d_gate (millivolt)" legend_algebraic[29] = "alpha_f_Ca in component L_type_calcium_current_f_Ca_gate (per_second)" legend_algebraic[30] = "beta_f_Ca in component L_type_calcium_current_f_Ca_gate (per_second)" legend_algebraic[31] = "CaChoff in component L_type_calcium_current_f_Ca_gate (dimensionless)" legend_algebraic[28] = "E0_f in component L_type_calcium_current_f_Ca_gate (millivolt)" legend_algebraic[37] = "i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_constants[51] = "K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless)" legend_algebraic[35] = "K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[29] = "K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[30] = "K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless)" legend_constants[31] = "K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[32] = "alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_constants[33] = "beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_states[10] = "Ca_up in component intracellular_calcium_concentration (millimolar)" legend_algebraic[39] = "i_rel in component calcium_release (millimolar_per_second)" legend_algebraic[11] = "VoltDep in component calcium_release (dimensionless)" legend_algebraic[15] = "RegBindSite in component calcium_release (dimensionless)" legend_algebraic[17] = "ActRate in component calcium_release (per_second)" legend_algebraic[19] = "InactRate in component calcium_release (per_second)" legend_constants[34] = "K_leak_rate in component calcium_release (per_second)" legend_constants[35] = "K_m_rel in component calcium_release (per_second)" legend_algebraic[5] = "PrecFrac in component calcium_release (dimensionless)" legend_states[11] = "ActFrac in component calcium_release (dimensionless)" legend_states[12] = "ProdFrac in component calcium_release (dimensionless)" legend_constants[36] = "ProdFracRate in component calcium_release (per_second)" legend_states[13] = "Ca_rel in component intracellular_calcium_concentration (millimolar)" legend_algebraic[40] = "i_trans in component calcium_translocation (millimolar_per_second)" legend_constants[37] = "alpha_tr in component calcium_translocation (per_second)" legend_constants[53] = "V_i in component intracellular_calcium_concentration (micrometre3)" legend_states[14] = "Ca_Calmod in component intracellular_calcium_concentration (millimolar)" legend_states[15] = "Ca_Trop in component intracellular_calcium_concentration (millimolar)" legend_constants[38] = "Calmod in component intracellular_calcium_concentration (millimolar)" legend_constants[39] = "Trop in component intracellular_calcium_concentration (millimolar)" legend_constants[40] = "alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second)" legend_constants[41] = "beta_Calmod in component intracellular_calcium_concentration (per_second)" legend_constants[42] = "alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second)" legend_constants[43] = "beta_Trop in component intracellular_calcium_concentration (per_second)" legend_constants[44] = "radius in component intracellular_calcium_concentration (micrometre)" legend_constants[45] = "length in component intracellular_calcium_concentration (micrometre)" legend_constants[50] = "V_Cell in component intracellular_calcium_concentration (micrometre3)" legend_constants[52] = "V_i_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[46] = "V_rel_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[47] = "V_e_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[48] = "V_up_ratio in component intracellular_calcium_concentration (dimensionless)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[3] = "d/dt m in component fast_sodium_current_m_gate (dimensionless)" legend_rates[4] = "d/dt h in component fast_sodium_current_h_gate (dimensionless)" legend_rates[5] = "d/dt r in component transient_outward_current_r_gate (dimensionless)" legend_rates[6] = "d/dt s in component transient_outward_current_s_gate (dimensionless)" legend_rates[8] = "d/dt d in component L_type_calcium_current_d_gate (dimensionless)" legend_rates[9] = "d/dt f_Ca in component L_type_calcium_current_f_Ca_gate (dimensionless)" legend_rates[11] = "d/dt ActFrac in component calcium_release (dimensionless)" legend_rates[12] = "d/dt ProdFrac in component calcium_release (dimensionless)" legend_rates[1] = "d/dt Na_i in component intracellular_sodium_concentration (millimolar)" legend_rates[2] = "d/dt K_i in component intracellular_potassium_concentration (millimolar)" legend_rates[7] = "d/dt Ca_i in component intracellular_calcium_concentration (millimolar)" legend_rates[14] = "d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar)" legend_rates[15] = "d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar)" legend_rates[10] = "d/dt Ca_up in component intracellular_calcium_concentration (millimolar)" legend_rates[13] = "d/dt Ca_rel in component intracellular_calcium_concentration (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -91.6 constants[0] = 8314.472 constants[1] = 310 constants[2] = 96485.3415 constants[3] = 4e-5 constants[4] = 0.1 constants[5] = 100000 constants[6] = 1 constants[7] = 0.002 constants[8] = -1.3 constants[9] = 0.5 constants[10] = 140 states[1] = 6.48 constants[11] = 4 states[2] = 140 states[3] = 0.076 states[4] = 0.015 constants[12] = 1e-5 constants[13] = 0.01 constants[14] = 0 states[5] = 0 states[6] = 1 constants[15] = 0.14 constants[16] = 1 constants[17] = 40 constants[18] = 0.00012 constants[19] = 5e-5 constants[20] = 2 states[7] = 1e-5 constants[21] = 0.0001 constants[22] = 3 constants[23] = 0.0001 constants[24] = 0.5 constants[25] = 0.0017 constants[26] = 0.017 constants[27] = 10 constants[28] = 0.05 states[8] = 0.0011 states[9] = 0.785 constants[29] = 0.0003 constants[30] = 0.4 constants[31] = 0.5 constants[32] = 3 constants[33] = 0.23 states[10] = 0.3 constants[34] = 0 constants[35] = 250 states[11] = 0 states[12] = 0 constants[36] = 1 states[13] = 0.3 constants[37] = 50 states[14] = 0.0005 states[15] = 0.0015 constants[38] = 0.02 constants[39] = 0.15 constants[40] = 100000 constants[41] = 50 constants[42] = 100000 constants[43] = 200 constants[44] = 0.01 constants[45] = 0.08 constants[46] = 0.1 constants[47] = 0.4 constants[48] = 0.01 constants[49] = (constants[0]*constants[1])/constants[2] constants[50] = 3.14159*(power(constants[44], 2.00000))*constants[45] constants[51] = (constants[29]*constants[30])/constants[31] constants[52] = ((1.00000-constants[47])-constants[48])-constants[46] constants[53] = constants[50]*constants[52] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[5] = 333.000*(1.00000/(1.00000+exp(-(states[0]+4.00000)/5.00000))-states[5]) algebraic[1] = 20.0000*exp(-0.125000*(states[0]+75.0000)) algebraic[7] = 2000.00/(1.00000+320.000*exp(-0.100000*(states[0]+75.0000))) rates[4] = algebraic[1]*(1.00000-states[4])-algebraic[7]*states[4] algebraic[2] = 0.0330000*exp(-states[0]/17.0000) algebraic[8] = 33.0000/(1.00000+exp(-0.125000*(states[0]+10.0000))) rates[6] = algebraic[2]*(1.00000-states[6])-algebraic[8]*states[6] algebraic[0] = states[0]+41.0000 algebraic[6] = custom_piecewise([less(fabs(algebraic[0]) , constants[12]), 2000.00 , True, (200.000*algebraic[0])/(1.00000-exp(-0.100000*algebraic[0]))]) algebraic[12] = 8000.00*exp(-0.0560000*(states[0]+66.0000)) rates[3] = algebraic[6]*(1.00000-states[3])-algebraic[12]*states[3] algebraic[3] = states[0]+19.0000 algebraic[9] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (30.0000*algebraic[3])/(1.00000-exp(-algebraic[3]/4.00000))]) algebraic[13] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (12.0000*algebraic[3])/(exp(algebraic[3]/10.0000)-1.00000)]) rates[8] = algebraic[9]*(1.00000-states[8])-algebraic[13]*states[8] algebraic[11] = exp(0.0800000*(states[0]-40.0000)) algebraic[15] = power(states[7]/(states[7]+0.000500000), 2.00000) algebraic[17] = 600.000*algebraic[11]+500.000*algebraic[15] algebraic[19] = 60.0000+500.000*algebraic[15] algebraic[5] = (1.00000-states[11])-states[12] rates[11] = algebraic[5]*algebraic[17]-states[11]*algebraic[19] rates[12] = states[11]*algebraic[19]-constants[36]*states[12] algebraic[28] = states[0]+34.0000 algebraic[29] = custom_piecewise([less(fabs(algebraic[28]) , 0.000100000), 25.0000 , True, (6.25000*algebraic[28])/(exp(algebraic[28]/4.00000)-1.00000)]) algebraic[30] = 12.0000/(1.00000+exp(-algebraic[28]/4.00000)) algebraic[31] = states[7]/(0.00100000+states[7]) rates[9] = (120.000*(1.00000-states[9])*algebraic[31]+(1.00000-states[9])*(1.00000-algebraic[31]))*algebraic[30]-algebraic[29]*states[9] algebraic[16] = constants[49]*log(constants[11]/states[2]) algebraic[26] = constants[25]*(states[0]-algebraic[16]) algebraic[27] = (((constants[26]*constants[11])/(constants[11]+constants[27]))*(states[0]-algebraic[16]))/(1.00000+exp((((states[0]-algebraic[16])-10.0000)*2.00000)/constants[49])) algebraic[18] = constants[13]*(constants[14]+states[6]*(1.00000-constants[14]))*states[5]*(states[0]-algebraic[16]) algebraic[20] = (((constants[15]*constants[11])/(constants[16]+constants[11]))*states[1])/(constants[17]+states[1]) algebraic[32] = (1.00000-states[9])*(1.00000-algebraic[31]) algebraic[34] = (((0.00200000*constants[28]*states[8]*algebraic[32]*(states[0]-50.0000))/constants[49])/(1.00000-exp(-(states[0]-50.0000)/constants[49])))*(states[2]*exp(50.0000/constants[49])-constants[11]*exp(-(states[0]-50.0000)/constants[49])) rates[2] = (-1.00000/(1.00000*constants[53]*constants[2]))*((algebraic[27]+algebraic[34]+algebraic[18]+algebraic[26])-2.00000*algebraic[20]) algebraic[21] = constants[49]*log(constants[10]/states[1]) algebraic[22] = constants[18]*(states[0]-algebraic[21]) algebraic[25] = (constants[21]*(exp((constants[24]*(constants[22]-2.00000)*states[0])/constants[49])*(power(states[1], constants[22]))*constants[20]-exp(((constants[24]-1.00000)*(constants[22]-2.00000)*states[0])/constants[49])*(power(constants[10], constants[22]))*states[7]))/((1.00000+constants[23]*(states[7]*(power(constants[10], constants[22]))+constants[20]*(power(states[1], constants[22]))))*(1.00000+states[7]/0.00690000)) algebraic[10] = constants[49]*log((constants[10]+0.120000*constants[11])/(states[1]+0.120000*states[2])) algebraic[14] = constants[9]*(power(states[3], 3.00000))*states[4]*(states[0]-algebraic[10]) algebraic[36] = (((0.0100000*constants[28]*states[8]*algebraic[32]*(states[0]-50.0000))/constants[49])/(1.00000-exp(-(states[0]-50.0000)/constants[49])))*(states[1]*exp(50.0000/constants[49])-constants[10]*exp(-(states[0]-50.0000)/constants[49])) rates[1] = (-1.00000/(1.00000*constants[53]*constants[2]))*(algebraic[14]+algebraic[22]+3.00000*algebraic[20]+3.00000*algebraic[25]+algebraic[36]) algebraic[23] = 0.500000*constants[49]*log(constants[20]/states[7]) algebraic[24] = constants[19]*(states[0]-algebraic[23]) algebraic[33] = (((4.00000*constants[28]*states[8]*algebraic[32]*(states[0]-50.0000))/constants[49])/(1.00000-exp((-(states[0]-50.0000)*2.00000)/constants[49])))*(states[7]*exp(100.000/constants[49])-constants[20]*exp((-(states[0]-50.0000)*2.00000)/constants[49])) algebraic[38] = algebraic[33]+algebraic[34]+algebraic[36] algebraic[4] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000]) rates[0] = (-1.00000/constants[3])*(algebraic[4]+algebraic[26]+algebraic[27]+algebraic[18]+algebraic[22]+algebraic[24]+algebraic[20]+algebraic[25]+algebraic[14]+algebraic[38]) rates[14] = constants[40]*states[7]*(constants[38]-states[14])-constants[41]*states[14] rates[15] = constants[42]*states[7]*(constants[39]-states[15])-constants[43]*states[15] algebraic[35] = states[7]+states[10]*constants[51]+constants[29]*constants[30]+constants[29] algebraic[37] = (states[7]/algebraic[35])*constants[32]-((states[10]*constants[51])/algebraic[35])*constants[33] algebraic[40] = (states[10]-states[13])*constants[37] rates[10] = (constants[52]/constants[48])*algebraic[37]-algebraic[40] algebraic[39] = ((power(states[11]/(states[11]+0.250000), 2.00000))*constants[35]+constants[34])*states[13] rates[13] = (constants[48]/constants[46])*algebraic[40]-algebraic[39] rates[7] = ((((-1.00000/(2.00000*1.00000*constants[53]*constants[2]))*((algebraic[33]+algebraic[24])-2.00000*algebraic[25])+(algebraic[39]*constants[46])/constants[52])-rates[14])-rates[15])-algebraic[37] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = 20.0000*exp(-0.125000*(states[0]+75.0000)) algebraic[7] = 2000.00/(1.00000+320.000*exp(-0.100000*(states[0]+75.0000))) algebraic[2] = 0.0330000*exp(-states[0]/17.0000) algebraic[8] = 33.0000/(1.00000+exp(-0.125000*(states[0]+10.0000))) algebraic[0] = states[0]+41.0000 algebraic[6] = custom_piecewise([less(fabs(algebraic[0]) , constants[12]), 2000.00 , True, (200.000*algebraic[0])/(1.00000-exp(-0.100000*algebraic[0]))]) algebraic[12] = 8000.00*exp(-0.0560000*(states[0]+66.0000)) algebraic[3] = states[0]+19.0000 algebraic[9] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (30.0000*algebraic[3])/(1.00000-exp(-algebraic[3]/4.00000))]) algebraic[13] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (12.0000*algebraic[3])/(exp(algebraic[3]/10.0000)-1.00000)]) algebraic[11] = exp(0.0800000*(states[0]-40.0000)) algebraic[15] = power(states[7]/(states[7]+0.000500000), 2.00000) algebraic[17] = 600.000*algebraic[11]+500.000*algebraic[15] algebraic[19] = 60.0000+500.000*algebraic[15] algebraic[5] = (1.00000-states[11])-states[12] algebraic[28] = states[0]+34.0000 algebraic[29] = custom_piecewise([less(fabs(algebraic[28]) , 0.000100000), 25.0000 , True, (6.25000*algebraic[28])/(exp(algebraic[28]/4.00000)-1.00000)]) algebraic[30] = 12.0000/(1.00000+exp(-algebraic[28]/4.00000)) algebraic[31] = states[7]/(0.00100000+states[7]) algebraic[16] = constants[49]*log(constants[11]/states[2]) algebraic[26] = constants[25]*(states[0]-algebraic[16]) algebraic[27] = (((constants[26]*constants[11])/(constants[11]+constants[27]))*(states[0]-algebraic[16]))/(1.00000+exp((((states[0]-algebraic[16])-10.0000)*2.00000)/constants[49])) algebraic[18] = constants[13]*(constants[14]+states[6]*(1.00000-constants[14]))*states[5]*(states[0]-algebraic[16]) algebraic[20] = (((constants[15]*constants[11])/(constants[16]+constants[11]))*states[1])/(constants[17]+states[1]) algebraic[32] = (1.00000-states[9])*(1.00000-algebraic[31]) algebraic[34] = (((0.00200000*constants[28]*states[8]*algebraic[32]*(states[0]-50.0000))/constants[49])/(1.00000-exp(-(states[0]-50.0000)/constants[49])))*(states[2]*exp(50.0000/constants[49])-constants[11]*exp(-(states[0]-50.0000)/constants[49])) algebraic[21] = constants[49]*log(constants[10]/states[1]) algebraic[22] = constants[18]*(states[0]-algebraic[21]) algebraic[25] = (constants[21]*(exp((constants[24]*(constants[22]-2.00000)*states[0])/constants[49])*(power(states[1], constants[22]))*constants[20]-exp(((constants[24]-1.00000)*(constants[22]-2.00000)*states[0])/constants[49])*(power(constants[10], constants[22]))*states[7]))/((1.00000+constants[23]*(states[7]*(power(constants[10], constants[22]))+constants[20]*(power(states[1], constants[22]))))*(1.00000+states[7]/0.00690000)) algebraic[10] = constants[49]*log((constants[10]+0.120000*constants[11])/(states[1]+0.120000*states[2])) algebraic[14] = constants[9]*(power(states[3], 3.00000))*states[4]*(states[0]-algebraic[10]) algebraic[36] = (((0.0100000*constants[28]*states[8]*algebraic[32]*(states[0]-50.0000))/constants[49])/(1.00000-exp(-(states[0]-50.0000)/constants[49])))*(states[1]*exp(50.0000/constants[49])-constants[10]*exp(-(states[0]-50.0000)/constants[49])) algebraic[23] = 0.500000*constants[49]*log(constants[20]/states[7]) algebraic[24] = constants[19]*(states[0]-algebraic[23]) algebraic[33] = (((4.00000*constants[28]*states[8]*algebraic[32]*(states[0]-50.0000))/constants[49])/(1.00000-exp((-(states[0]-50.0000)*2.00000)/constants[49])))*(states[7]*exp(100.000/constants[49])-constants[20]*exp((-(states[0]-50.0000)*2.00000)/constants[49])) algebraic[38] = algebraic[33]+algebraic[34]+algebraic[36] algebraic[4] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000]) algebraic[35] = states[7]+states[10]*constants[51]+constants[29]*constants[30]+constants[29] algebraic[37] = (states[7]/algebraic[35])*constants[32]-((states[10]*constants[51])/algebraic[35])*constants[33] algebraic[40] = (states[10]-states[13])*constants[37] algebraic[39] = ((power(states[11]/(states[11]+0.250000), 2.00000))*constants[35]+constants[34])*states[13] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)