# Size of variable arrays: sizeAlgebraic = 1 sizeStates = 3 sizeConstants = 4 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_states[0] = "C in component MultienvironmentExampleComponent (uM)" legend_states[1] = "D in component MultienvironmentExampleComponent (per_um2)" legend_states[2] = "E in component MultienvironmentExampleComponent (per_um2)" legend_constants[0] = "kf in component MultienvironmentExampleComponent (per_uM_per_s)" legend_constants[1] = "kr in component MultienvironmentExampleComponent (per_s)" legend_algebraic[0] = "J in component MultienvironmentExampleComponent (per_um2_per_s)" legend_voi = "t in component MultienvironmentExampleComponent (second)" legend_constants[2] = "R in component MultienvironmentExampleComponent (per_um)" legend_constants[3] = "Cpc in component MultienvironmentExampleComponent (uM_um2)" legend_rates[0] = "d/dt C in component MultienvironmentExampleComponent (uM)" legend_rates[1] = "d/dt D in component MultienvironmentExampleComponent (per_um2)" legend_rates[2] = "d/dt E in component MultienvironmentExampleComponent (per_um2)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 200 states[1] = 4 states[2] = 0 constants[0] = 6e-3 constants[1] = 1e-3 constants[2] = 5 constants[3] = constants[2]/602.200 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = states[0]*states[1]*constants[0]-constants[1]*states[2] rates[0] = -constants[3]*algebraic[0] rates[1] = -algebraic[0] rates[2] = algebraic[0] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = states[0]*states[1]*constants[0]-constants[1]*states[2] return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)