Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 76 entries in the algebraic variable array.
   There are a total of 20 entries in each of the rate and state variable arrays.
   There are a total of 52 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (millisecond).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_mole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_millimole).
 * CONSTANTS[3] is Cm in component membrane (microF).
 * CONSTANTS[4] is V_c in component membrane (micrometre3).
 * ALGEBRAIC[12] is i_K1 in component inward_rectifier_potassium_current (picoA_per_picoF).
 * ALGEBRAIC[54] is i_to in component transient_outward_current (picoA_per_picoF).
 * ALGEBRAIC[71] is i_sus in component sustained_outward_current (picoA_per_picoF).
 * ALGEBRAIC[13] is i_Kr in component rapid_time_dependent_potassium_current (picoA_per_picoF).
 * ALGEBRAIC[22] is i_Ks in component slow_time_dependent_potassium_current (picoA_per_picoF).
 * ALGEBRAIC[41] is i_CaL in component L_type_Ca_current (picoA_per_picoF).
 * ALGEBRAIC[60] is i_NaK in component sodium_potassium_pump_current (picoA_per_picoF).
 * ALGEBRAIC[27] is i_Na in component fast_sodium_current (picoA_per_picoF).
 * ALGEBRAIC[40] is i_b_Na in component sodium_background_current (picoA_per_picoF).
 * ALGEBRAIC[61] is i_NaCa in component sodium_calcium_exchanger_current (picoA_per_picoF).
 * ALGEBRAIC[53] is i_b_Ca in component calcium_background_current (picoA_per_picoF).
 * ALGEBRAIC[63] is i_p_K in component potassium_pump_current (picoA_per_picoF).
 * ALGEBRAIC[62] is i_p_Ca in component calcium_pump_current (picoA_per_picoF).
 * ALGEBRAIC[6] is i_f in component hyperpolarization_activated_current (picoA_per_picoF).
 * ALGEBRAIC[0] is E_Na in component reversal_potentials (millivolt).
 * ALGEBRAIC[1] is E_K in component reversal_potentials (millivolt).
 * ALGEBRAIC[2] is E_Ks in component reversal_potentials (millivolt).
 * ALGEBRAIC[3] is E_Ca in component reversal_potentials (millivolt).
 * CONSTANTS[5] is P_kna in component reversal_potentials (dimensionless).
 * CONSTANTS[6] is K_o in component potassium_dynamics (millimolar).
 * CONSTANTS[7] is Na_o in component sodium_dynamics (millimolar).
 * STATES[1] is K_i in component potassium_dynamics (millimolar).
 * STATES[2] is Na_i in component sodium_dynamics (millimolar).
 * CONSTANTS[8] is Ca_o in component calcium_dynamics (millimolar).
 * STATES[3] is Ca_i in component calcium_dynamics (millimolar).
 * ALGEBRAIC[4] is i_f_Na in component hyperpolarization_activated_current (picoA_per_picoF).
 * ALGEBRAIC[5] is i_f_K in component hyperpolarization_activated_current (picoA_per_picoF).
 * CONSTANTS[9] is g_f_Na in component hyperpolarization_activated_current (nanoS_per_picoF).
 * CONSTANTS[10] is g_f_K in component hyperpolarization_activated_current (nanoS_per_picoF).
 * STATES[4] is y in component hyperpolarization_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[7] is y_inf in component hyperpolarization_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[8] is alpha_y in component hyperpolarization_activated_current_y_gate (per_millisecond).
 * ALGEBRAIC[9] is beta_y in component hyperpolarization_activated_current_y_gate (per_millisecond).
 * ALGEBRAIC[10] is tau_y in component hyperpolarization_activated_current_y_gate (millisecond).
 * CONSTANTS[11] is g_K1 in component inward_rectifier_potassium_current (nanoS_per_picoF).
 * ALGEBRAIC[11] is xK1_inf in component inward_rectifier_potassium_current (dimensionless).
 * CONSTANTS[12] is g_Kr in component rapid_time_dependent_potassium_current (nanoS_per_picoF).
 * STATES[5] is Xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * STATES[6] is Xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[14] is xr1_inf in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * ALGEBRAIC[15] is alpha_xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * ALGEBRAIC[16] is beta_xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * ALGEBRAIC[17] is tau_xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (millisecond).
 * ALGEBRAIC[18] is xr2_inf in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[19] is alpha_xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[20] is beta_xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[21] is tau_xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (millisecond).
 * CONSTANTS[13] is g_Ks in component slow_time_dependent_potassium_current (nanoS_per_picoF).
 * STATES[7] is Xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[23] is xs_inf in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[24] is alpha_xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[25] is beta_xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[26] is tau_xs in component slow_time_dependent_potassium_current_Xs_gate (millisecond).
 * CONSTANTS[14] is g_Na in component fast_sodium_current (nanoS_per_picoF).
 * STATES[8] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[9] is h in component fast_sodium_current_h_gate (dimensionless).
 * STATES[10] is j in component fast_sodium_current_j_gate (dimensionless).
 * ALGEBRAIC[28] is m_inf in component fast_sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[29] is alpha_m in component fast_sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[30] is beta_m in component fast_sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[31] is tau_m in component fast_sodium_current_m_gate (millisecond).
 * ALGEBRAIC[32] is h_inf in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[33] is alpha_h in component fast_sodium_current_h_gate (per_millisecond).
 * ALGEBRAIC[34] is beta_h in component fast_sodium_current_h_gate (per_millisecond).
 * ALGEBRAIC[35] is tau_h in component fast_sodium_current_h_gate (millisecond).
 * ALGEBRAIC[36] is j_inf in component fast_sodium_current_j_gate (dimensionless).
 * ALGEBRAIC[37] is alpha_j in component fast_sodium_current_j_gate (per_millisecond).
 * ALGEBRAIC[38] is beta_j in component fast_sodium_current_j_gate (per_millisecond).
 * ALGEBRAIC[39] is tau_j in component fast_sodium_current_j_gate (millisecond).
 * CONSTANTS[15] is g_bna in component sodium_background_current (nanoS_per_picoF).
 * CONSTANTS[16] is g_CaL in component L_type_Ca_current (litre_per_farad_second).
 * STATES[11] is Ca_ss in component calcium_dynamics (millimolar).
 * STATES[12] is d in component L_type_Ca_current_d_gate (dimensionless).
 * STATES[13] is f in component L_type_Ca_current_f_gate (dimensionless).
 * STATES[14] is f2 in component L_type_Ca_current_f2_gate (dimensionless).
 * STATES[15] is fCass in component L_type_Ca_current_fCass_gate (dimensionless).
 * ALGEBRAIC[42] is d_inf in component L_type_Ca_current_d_gate (dimensionless).
 * ALGEBRAIC[43] is alpha_d in component L_type_Ca_current_d_gate (dimensionless).
 * ALGEBRAIC[44] is beta_d in component L_type_Ca_current_d_gate (dimensionless).
 * ALGEBRAIC[45] is gamma_d in component L_type_Ca_current_d_gate (millisecond).
 * ALGEBRAIC[46] is tau_d in component L_type_Ca_current_d_gate (millisecond).
 * ALGEBRAIC[47] is f_inf in component L_type_Ca_current_f_gate (dimensionless).
 * ALGEBRAIC[48] is tau_f in component L_type_Ca_current_f_gate (millisecond).
 * ALGEBRAIC[49] is f2_inf in component L_type_Ca_current_f2_gate (dimensionless).
 * ALGEBRAIC[50] is tau_f2 in component L_type_Ca_current_f2_gate (millisecond).
 * ALGEBRAIC[51] is fCass_inf in component L_type_Ca_current_fCass_gate (dimensionless).
 * ALGEBRAIC[52] is tau_fCass in component L_type_Ca_current_fCass_gate (millisecond).
 * CONSTANTS[17] is g_bca in component calcium_background_current (nanoS_per_picoF).
 * CONSTANTS[18] is g_to in component transient_outward_current (nanoS_per_picoF).
 * STATES[16] is s in component transient_outward_current_s_gate (dimensionless).
 * STATES[17] is r in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[55] is s_inf in component transient_outward_current_s_gate (dimensionless).
 * ALGEBRAIC[56] is tau_s in component transient_outward_current_s_gate (millisecond).
 * ALGEBRAIC[57] is r_inf in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[58] is tau_r in component transient_outward_current_r_gate (millisecond).
 * CONSTANTS[19] is g_sus in component sustained_outward_current (nanoS_per_picoF).
 * ALGEBRAIC[59] is a in component sustained_outward_current (dimensionless).
 * CONSTANTS[20] is P_NaK in component sodium_potassium_pump_current (picoA_per_picoF).
 * CONSTANTS[21] is K_mk in component sodium_potassium_pump_current (millimolar).
 * CONSTANTS[22] is K_mNa in component sodium_potassium_pump_current (millimolar).
 * CONSTANTS[23] is K_NaCa in component sodium_calcium_exchanger_current (picoA_per_picoF).
 * CONSTANTS[24] is K_sat in component sodium_calcium_exchanger_current (dimensionless).
 * CONSTANTS[25] is alpha in component sodium_calcium_exchanger_current (dimensionless).
 * CONSTANTS[26] is gamma in component sodium_calcium_exchanger_current (dimensionless).
 * CONSTANTS[27] is Km_Ca in component sodium_calcium_exchanger_current (millimolar).
 * CONSTANTS[28] is Km_Nai in component sodium_calcium_exchanger_current (millimolar).
 * CONSTANTS[29] is g_pCa in component calcium_pump_current (picoA_per_picoF).
 * CONSTANTS[30] is K_pCa in component calcium_pump_current (millimolar).
 * CONSTANTS[31] is g_pK in component potassium_pump_current (nanoS_per_picoF).
 * STATES[18] is Ca_SR in component calcium_dynamics (millimolar).
 * ALGEBRAIC[75] is i_rel in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[64] is i_up in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[65] is i_leak in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[66] is i_xfer in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[74] is O in component calcium_dynamics (dimensionless).
 * STATES[19] is R_prime in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[72] is k1 in component calcium_dynamics (per_millimolar2_per_millisecond).
 * ALGEBRAIC[73] is k2 in component calcium_dynamics (per_millimolar_per_millisecond).
 * CONSTANTS[32] is k1_prime in component calcium_dynamics (per_millimolar2_per_millisecond).
 * CONSTANTS[33] is k2_prime in component calcium_dynamics (per_millimolar_per_millisecond).
 * CONSTANTS[34] is k3 in component calcium_dynamics (per_millisecond).
 * CONSTANTS[35] is k4 in component calcium_dynamics (per_millisecond).
 * CONSTANTS[36] is EC in component calcium_dynamics (millimolar).
 * CONSTANTS[37] is max_sr in component calcium_dynamics (dimensionless).
 * CONSTANTS[38] is min_sr in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[67] is kcasr in component calcium_dynamics (dimensionless).
 * CONSTANTS[39] is V_rel in component calcium_dynamics (per_millisecond).
 * CONSTANTS[40] is V_xfer in component calcium_dynamics (per_millisecond).
 * CONSTANTS[41] is K_up in component calcium_dynamics (millimolar).
 * CONSTANTS[42] is V_leak in component calcium_dynamics (per_millisecond).
 * CONSTANTS[43] is Vmax_up in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[68] is Ca_i_bufc in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[69] is Ca_sr_bufsr in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[70] is Ca_ss_bufss in component calcium_dynamics (dimensionless).
 * CONSTANTS[44] is Buf_c in component calcium_dynamics (millimolar).
 * CONSTANTS[45] is K_buf_c in component calcium_dynamics (millimolar).
 * CONSTANTS[46] is Buf_sr in component calcium_dynamics (millimolar).
 * CONSTANTS[47] is K_buf_sr in component calcium_dynamics (millimolar).
 * CONSTANTS[48] is Buf_ss in component calcium_dynamics (millimolar).
 * CONSTANTS[49] is K_buf_ss in component calcium_dynamics (millimolar).
 * CONSTANTS[50] is V_sr in component calcium_dynamics (micrometre3).
 * CONSTANTS[51] is V_ss in component calcium_dynamics (micrometre3).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[4] is d/dt y in component hyperpolarization_activated_current_y_gate (dimensionless).
 * RATES[5] is d/dt Xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * RATES[6] is d/dt Xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * RATES[7] is d/dt Xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * RATES[8] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[9] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[10] is d/dt j in component fast_sodium_current_j_gate (dimensionless).
 * RATES[12] is d/dt d in component L_type_Ca_current_d_gate (dimensionless).
 * RATES[13] is d/dt f in component L_type_Ca_current_f_gate (dimensionless).
 * RATES[14] is d/dt f2 in component L_type_Ca_current_f2_gate (dimensionless).
 * RATES[15] is d/dt fCass in component L_type_Ca_current_fCass_gate (dimensionless).
 * RATES[16] is d/dt s in component transient_outward_current_s_gate (dimensionless).
 * RATES[17] is d/dt r in component transient_outward_current_r_gate (dimensionless).
 * RATES[19] is d/dt R_prime in component calcium_dynamics (dimensionless).
 * RATES[3] is d/dt Ca_i in component calcium_dynamics (millimolar).
 * RATES[18] is d/dt Ca_SR in component calcium_dynamics (millimolar).
 * RATES[11] is d/dt Ca_ss in component calcium_dynamics (millimolar).
 * RATES[2] is d/dt Na_i in component sodium_dynamics (millimolar).
 * RATES[1] is d/dt K_i in component potassium_dynamics (millimolar).
 * There are a total of 4 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -69.1370441635924;
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 0.185;
CONSTANTS[4] = 0.016404;
CONSTANTS[5] = 0.03;
CONSTANTS[6] = 5.4;
CONSTANTS[7] = 140;
STATES[1] = 136.781894160227;
STATES[2] = 8.80420286531673;
CONSTANTS[8] = 2;
STATES[3] = 0.000101878186157052;
CONSTANTS[9] = 0.0145654;
CONSTANTS[10] = 0.0234346;
STATES[4] = 0.0457562667986602;
CONSTANTS[11] = 0.065;
CONSTANTS[12] = 0.0918;
STATES[5] = 0.00550281999719088;
STATES[6] = 0.313213286437995;
CONSTANTS[13] = 0.2352;
STATES[7] = 0.00953708522974789;
CONSTANTS[14] = 130.5744;
STATES[8] = 0.0417391656294997;
STATES[9] = 0.190678733735145;
STATES[10] = 0.238219836154029;
CONSTANTS[15] = 0.00029;
CONSTANTS[16] = 3.98e-5;
STATES[11] = 0.000446818714055411;
STATES[12] = 0.000287906256206415;
STATES[13] = 0.989328560287987;
STATES[14] = 0.995474890442185;
STATES[15] = 0.999955429598213;
CONSTANTS[17] = 0.000592;
CONSTANTS[18] = 0.08184;
STATES[16] = 0.96386101799501;
STATES[17] = 0.00103618091196912;
CONSTANTS[19] = 0.0227;
CONSTANTS[20] = 2.724;
CONSTANTS[21] = 1;
CONSTANTS[22] = 40;
CONSTANTS[23] = 1000;
CONSTANTS[24] = 0.1;
CONSTANTS[25] = 2.5;
CONSTANTS[26] = 0.35;
CONSTANTS[27] = 1.38;
CONSTANTS[28] = 87.5;
CONSTANTS[29] = 0.1238;
CONSTANTS[30] = 0.0005;
CONSTANTS[31] = 0.0146;
STATES[18] = 3.10836886659417;
STATES[19] = 0.991580051907845;
CONSTANTS[32] = 0.15;
CONSTANTS[33] = 0.045;
CONSTANTS[34] = 0.06;
CONSTANTS[35] = 0.005;
CONSTANTS[36] = 1.5;
CONSTANTS[37] = 2.5;
CONSTANTS[38] = 1;
CONSTANTS[39] = 0.102;
CONSTANTS[40] = 0.0038;
CONSTANTS[41] = 0.00025;
CONSTANTS[42] = 0.00036;
CONSTANTS[43] = 0.006375;
CONSTANTS[44] = 0.2;
CONSTANTS[45] = 0.001;
CONSTANTS[46] = 10;
CONSTANTS[47] = 0.3;
CONSTANTS[48] = 0.4;
CONSTANTS[49] = 0.00025;
CONSTANTS[50] = 0.001094;
CONSTANTS[51] = 5.468e-5;
RATES[0] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[17] = 0.1001;
RATES[19] = 0.1001;
RATES[3] = 0.1001;
RATES[18] = 0.1001;
RATES[11] = 0.1001;
RATES[2] = 0.1001;
RATES[1] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/1.00000)*(ALGEBRAIC[12]+ALGEBRAIC[54]+ALGEBRAIC[71]+ALGEBRAIC[13]+ALGEBRAIC[22]+ALGEBRAIC[41]+ALGEBRAIC[60]+ALGEBRAIC[27]+ALGEBRAIC[40]+ALGEBRAIC[61]+ALGEBRAIC[53]+ALGEBRAIC[63]+ALGEBRAIC[62]+ALGEBRAIC[6]);
resid[1] = RATES[4] - (ALGEBRAIC[7] - STATES[4])/ALGEBRAIC[10];
resid[2] = RATES[5] - (ALGEBRAIC[14] - STATES[5])/ALGEBRAIC[17];
resid[3] = RATES[6] - (ALGEBRAIC[18] - STATES[6])/ALGEBRAIC[21];
resid[4] = RATES[7] - (ALGEBRAIC[23] - STATES[7])/ALGEBRAIC[26];
resid[5] = RATES[8] - (ALGEBRAIC[28] - STATES[8])/ALGEBRAIC[31];
resid[6] = RATES[9] - (ALGEBRAIC[32] - STATES[9])/ALGEBRAIC[35];
resid[7] = RATES[10] - (ALGEBRAIC[36] - STATES[10])/ALGEBRAIC[39];
resid[8] = RATES[12] - (ALGEBRAIC[42] - STATES[12])/ALGEBRAIC[46];
resid[9] = RATES[13] - (ALGEBRAIC[47] - STATES[13])/ALGEBRAIC[48];
resid[10] = RATES[14] - (ALGEBRAIC[49] - STATES[14])/ALGEBRAIC[50];
resid[11] = RATES[15] - (ALGEBRAIC[51] - STATES[15])/ALGEBRAIC[52];
resid[12] = RATES[16] - (ALGEBRAIC[55] - STATES[16])/ALGEBRAIC[56];
resid[13] = RATES[17] - (ALGEBRAIC[57] - STATES[17])/ALGEBRAIC[58];
resid[14] = RATES[19] -  - ALGEBRAIC[73]*STATES[11]*STATES[19]+ CONSTANTS[35]*(1.00000 - STATES[19]);
resid[15] = RATES[3] -  ALGEBRAIC[68]*((( (ALGEBRAIC[65] - ALGEBRAIC[64])*CONSTANTS[50])/CONSTANTS[4]+ALGEBRAIC[66]) - ( 1.00000*((ALGEBRAIC[53]+ALGEBRAIC[62]) -  2.00000*ALGEBRAIC[61])*CONSTANTS[3])/( 2.00000*1.00000*CONSTANTS[4]*CONSTANTS[2]));
resid[16] = RATES[18] -  ALGEBRAIC[69]*(ALGEBRAIC[64] - (ALGEBRAIC[75]+ALGEBRAIC[65]));
resid[17] = RATES[11] -  ALGEBRAIC[70]*((( - 1.00000*ALGEBRAIC[41]*CONSTANTS[3])/( 2.00000*1.00000*CONSTANTS[51]*CONSTANTS[2])+( ALGEBRAIC[75]*CONSTANTS[50])/CONSTANTS[51]) - ( ALGEBRAIC[66]*CONSTANTS[4])/CONSTANTS[51]);
resid[18] = RATES[2] -  (( - 1.00000*(ALGEBRAIC[27]+ALGEBRAIC[40]+ALGEBRAIC[4]+ 3.00000*ALGEBRAIC[60]+ 3.00000*ALGEBRAIC[61]))/( 1.00000*CONSTANTS[4]*CONSTANTS[2]))*CONSTANTS[3];
resid[19] = RATES[1] -  (( - 1.00000*((ALGEBRAIC[12]+ALGEBRAIC[54]+ALGEBRAIC[5]+ALGEBRAIC[71]+ALGEBRAIC[13]+ALGEBRAIC[22]+ALGEBRAIC[63]) -  2.00000*ALGEBRAIC[60]))/( 1.00000*CONSTANTS[4]*CONSTANTS[2]))*CONSTANTS[3];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[7]/STATES[2]);
ALGEBRAIC[4] =  STATES[4]*CONSTANTS[9]*(STATES[0] - ALGEBRAIC[0]);
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[6]/STATES[1]);
ALGEBRAIC[5] =  STATES[4]*CONSTANTS[10]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[6] = ALGEBRAIC[4]+ALGEBRAIC[5];
ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+80.6000)/6.80000));
ALGEBRAIC[8] =  1.00000*exp(- 2.90000 -  0.0400000*STATES[0]);
ALGEBRAIC[9] =  1.00000*exp(3.60000+ 0.110000*STATES[0]);
ALGEBRAIC[10] = 4000.00/(ALGEBRAIC[8]+ALGEBRAIC[9]);
ALGEBRAIC[11] = 1.00000/(1.00000+exp( 0.100000*(STATES[0]+75.4400)));
ALGEBRAIC[12] =  CONSTANTS[11]*ALGEBRAIC[11]*((STATES[0] - 8.00000) - ALGEBRAIC[1]);
ALGEBRAIC[13] =  CONSTANTS[12]* pow((CONSTANTS[6]/5.40000), 1.0 / 2)*STATES[5]*STATES[6]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[14] = 1.00000/(1.00000+exp((- 26.0000 - STATES[0])/7.00000));
ALGEBRAIC[15] = 450.000/(1.00000+exp((- 45.0000 - STATES[0])/10.0000));
ALGEBRAIC[16] = 6.00000/(1.00000+exp((STATES[0]+30.0000)/11.5000));
ALGEBRAIC[17] =  1.00000*ALGEBRAIC[15]*ALGEBRAIC[16];
ALGEBRAIC[18] = 1.00000/(1.00000+exp((STATES[0]+88.0000)/24.0000));
ALGEBRAIC[19] = 3.00000/(1.00000+exp((- 60.0000 - STATES[0])/20.0000));
ALGEBRAIC[20] = 1.12000/(1.00000+exp((STATES[0] - 60.0000)/20.0000));
ALGEBRAIC[21] =  1.00000*ALGEBRAIC[19]*ALGEBRAIC[20];
ALGEBRAIC[2] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[6]+ CONSTANTS[5]*CONSTANTS[7])/(STATES[1]+ CONSTANTS[5]*STATES[2]));
ALGEBRAIC[22] =  CONSTANTS[13]*pow(STATES[7], 2.00000)*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[23] = 1.00000/(1.00000+exp((- 5.00000 - STATES[0])/14.0000));
ALGEBRAIC[24] = 1400.00/ pow((1.00000+exp((5.00000 - STATES[0])/6.00000)), 1.0 / 2);
ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[0] - 35.0000)/15.0000));
ALGEBRAIC[26] =  1.00000*ALGEBRAIC[24]*ALGEBRAIC[25]+80.0000;
ALGEBRAIC[27] =  CONSTANTS[14]*pow(STATES[8], 3.00000)*STATES[9]*STATES[10]*(STATES[0] - ALGEBRAIC[0]);
ALGEBRAIC[28] = 1.00000/pow(1.00000+exp((- 56.8600 - STATES[0])/9.03000), 2.00000);
ALGEBRAIC[29] = 1.00000/(1.00000+exp((- 60.0000 - STATES[0])/5.00000));
ALGEBRAIC[30] = 0.100000/(1.00000+exp((STATES[0]+35.0000)/5.00000))+0.100000/(1.00000+exp((STATES[0] - 50.0000)/200.000));
ALGEBRAIC[31] =  1.00000*ALGEBRAIC[29]*ALGEBRAIC[30];
ALGEBRAIC[32] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000);
ALGEBRAIC[33] = (CONDVAR[0]<0.00000 ?  0.0570000*exp(- (STATES[0]+80.0000)/6.80000) : 0.00000);
ALGEBRAIC[34] = (CONDVAR[1]<0.00000 ?  2.70000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.348500*STATES[0]) : 0.770000/( 0.130000*(1.00000+exp((STATES[0]+10.6600)/- 11.1000))));
ALGEBRAIC[35] = 1.00000/(ALGEBRAIC[33]+ALGEBRAIC[34]);
ALGEBRAIC[36] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000);
ALGEBRAIC[37] = (CONDVAR[2]<0.00000 ? (( ( - 25428.0*exp( 0.244400*STATES[0]) -  6.94800e-06*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/1.00000)/(1.00000+exp( 0.311000*(STATES[0]+79.2300))) : 0.00000);
ALGEBRAIC[38] = (CONDVAR[3]<0.00000 ? ( 0.0242400*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))) : ( 0.600000*exp( 0.0570000*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000))));
ALGEBRAIC[39] = 1.00000/(ALGEBRAIC[37]+ALGEBRAIC[38]);
ALGEBRAIC[40] =  CONSTANTS[15]*(STATES[0] - ALGEBRAIC[0]);
ALGEBRAIC[41] = ( (( CONSTANTS[16]*STATES[12]*STATES[13]*STATES[14]*STATES[15]*4.00000*(STATES[0] - 15.0000)*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( 0.250000*STATES[11]*exp(( 2.00000*(STATES[0] - 15.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[8]))/(exp(( 2.00000*(STATES[0] - 15.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[42] = 1.00000/(1.00000+exp((- 8.00000 - STATES[0])/7.50000));
ALGEBRAIC[43] = 1.40000/(1.00000+exp((- 35.0000 - STATES[0])/13.0000))+0.250000;
ALGEBRAIC[44] = 1.40000/(1.00000+exp((STATES[0]+5.00000)/5.00000));
ALGEBRAIC[45] = 1.00000/(1.00000+exp((50.0000 - STATES[0])/20.0000));
ALGEBRAIC[46] =  1.00000*ALGEBRAIC[43]*ALGEBRAIC[44]+ALGEBRAIC[45];
ALGEBRAIC[47] = 1.00000/(1.00000+exp((STATES[0]+20.0000)/7.00000));
ALGEBRAIC[48] =  1102.50*exp(- pow(STATES[0]+27.0000, 2.00000)/225.000)+200.000/(1.00000+exp((13.0000 - STATES[0])/10.0000))+180.000/(1.00000+exp((STATES[0]+30.0000)/10.0000))+20.0000;
ALGEBRAIC[49] = 0.670000/(1.00000+exp((STATES[0]+35.0000)/7.00000))+0.330000;
ALGEBRAIC[50] =  562.000*exp(- pow(STATES[0]+27.0000, 2.00000)/240.000)+31.0000/(1.00000+exp((25.0000 - STATES[0])/10.0000))+80.0000/(1.00000+exp((STATES[0]+30.0000)/10.0000));
ALGEBRAIC[51] = 0.600000/(1.00000+pow(STATES[11]/0.0500000, 2.00000))+0.400000;
ALGEBRAIC[52] = 80.0000/(1.00000+pow(STATES[11]/0.0500000, 2.00000))+2.00000;
ALGEBRAIC[3] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[8]/STATES[3]);
ALGEBRAIC[53] =  CONSTANTS[17]*(STATES[0] - ALGEBRAIC[3]);
ALGEBRAIC[54] =  CONSTANTS[18]*STATES[17]*STATES[16]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[55] = 1.00000/(1.00000+exp((STATES[0]+27.0000)/13.0000));
ALGEBRAIC[56] =  85.0000*exp(- pow(STATES[0]+25.0000, 2.00000)/320.000)+5.00000/(1.00000+exp((STATES[0] - 40.0000)/5.00000))+42.0000;
ALGEBRAIC[57] = 1.00000/(1.00000+exp((20.0000 - STATES[0])/13.0000));
ALGEBRAIC[58] =  10.4500*exp(- pow(STATES[0]+40.0000, 2.00000)/1800.00)+7.30000;
ALGEBRAIC[60] = (( (( CONSTANTS[20]*CONSTANTS[6])/(CONSTANTS[6]+CONSTANTS[21]))*STATES[2])/(STATES[2]+CONSTANTS[22]))/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0353000*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[61] = ( CONSTANTS[23]*( exp(( CONSTANTS[26]*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], 3.00000)*CONSTANTS[8] -  exp(( (CONSTANTS[26] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[7], 3.00000)*STATES[3]*CONSTANTS[25]))/( (pow(CONSTANTS[28], 3.00000)+pow(CONSTANTS[7], 3.00000))*(CONSTANTS[27]+CONSTANTS[8])*(1.00000+ CONSTANTS[24]*exp(( (CONSTANTS[26] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))));
ALGEBRAIC[62] = ( CONSTANTS[29]*STATES[3])/(STATES[3]+CONSTANTS[30]);
ALGEBRAIC[63] = ( CONSTANTS[31]*(STATES[0] - ALGEBRAIC[1]))/(1.00000+exp((25.0000 - STATES[0])/5.98000));
ALGEBRAIC[64] = CONSTANTS[43]/(1.00000+pow(CONSTANTS[41], 2.00000)/pow(STATES[3], 2.00000));
ALGEBRAIC[65] =  CONSTANTS[42]*(STATES[18] - STATES[3]);
ALGEBRAIC[66] =  CONSTANTS[40]*(STATES[11] - STATES[3]);
ALGEBRAIC[68] = 1.00000/(1.00000+( CONSTANTS[44]*CONSTANTS[45])/pow(STATES[3]+CONSTANTS[45], 2.00000));
ALGEBRAIC[69] = 1.00000/(1.00000+( CONSTANTS[46]*CONSTANTS[47])/pow(STATES[18]+CONSTANTS[47], 2.00000));
ALGEBRAIC[70] = 1.00000/(1.00000+( CONSTANTS[48]*CONSTANTS[49])/pow(STATES[11]+CONSTANTS[49], 2.00000));
ALGEBRAIC[59] = 1.00000/(1.00000+exp((5.00000 - STATES[0])/17.0000));
ALGEBRAIC[71] =  CONSTANTS[19]*ALGEBRAIC[59]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[67] = CONSTANTS[37] - (CONSTANTS[37] - CONSTANTS[38])/(1.00000+pow(CONSTANTS[36]/STATES[18], 2.00000));
ALGEBRAIC[73] =  CONSTANTS[33]*ALGEBRAIC[67];
ALGEBRAIC[72] = CONSTANTS[32]/ALGEBRAIC[67];
ALGEBRAIC[74] = ( ALGEBRAIC[72]*pow(STATES[11], 2.00000)*STATES[19])/(CONSTANTS[34]+ ALGEBRAIC[72]*pow(STATES[11], 2.00000));
ALGEBRAIC[75] =  CONSTANTS[39]*ALGEBRAIC[74]*(STATES[18] - STATES[11]);
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = STATES[0] - - 40.0000;
CONDVAR[1] = STATES[0] - - 40.0000;
CONDVAR[2] = STATES[0] - - 40.0000;
CONDVAR[3] = STATES[0] - - 40.0000;
}