# Size of variable arrays: sizeAlgebraic = 2 sizeStates = 1 sizeConstants = 17 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (msec)" legend_constants[0] = "Ca_cyt in component general_parameters (uM)" legend_constants[1] = "Ca_NSR in component general_parameters (uM)" legend_constants[2] = "CaMKII_reg in component general_parameters (dimensionless)" legend_constants[3] = "SERCA_TOT in component serca_parameters (uM)" legend_constants[4] = "PSR in component serca_parameters (dimensionless)" legend_constants[5] = "Kmf_PLBKO in component serca_parameters (uM)" legend_constants[6] = "Kmf_PLB in component serca_parameters (uM)" legend_constants[7] = "Kmr_PLBKO in component serca_parameters (uM)" legend_constants[8] = "Kmr_PLB in component serca_parameters (uM)" legend_constants[12] = "EC_50_fwd in component serca_parameters (uM)" legend_constants[10] = "EC_50_rev in component serca_parameters (uM)" legend_constants[15] = "k_cyt_serca in component transition_parameters (per_msec_per_uM2)" legend_constants[16] = "k_serca_cyt in component transition_parameters (per_msec)" legend_constants[11] = "k_serca_sr in component transition_parameters (per_msec)" legend_constants[13] = "k_sr_serca in component transition_parameters (per_msec_per_uM2)" legend_constants[14] = "br_cyt_serca in component transition_parameters (per_msec_per_uM2)" legend_constants[9] = "br_serca_sr in component transition_parameters (per_msec)" legend_algebraic[0] = "J_cyt_serca in component calcium_fluxes (uM_per_msec)" legend_algebraic[1] = "J_serca_sr in component calcium_fluxes (uM_per_msec)" legend_states[0] = "Ca_serca in component calcium_bound_serca (uM)" legend_rates[0] = "d/dt Ca_serca in component calcium_bound_serca (uM)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 0.25 constants[1] = 760 constants[2] = 0 constants[3] = 47 constants[4] = 1 constants[5] = 0.15 constants[6] = 0.15 constants[7] = 2500 constants[8] = 1110 constants[9] = 0.00625 states[0] = 12 constants[10] = constants[7]-constants[8]*constants[4] constants[11] = constants[9]*(1.00000+0.700000*constants[2]) constants[12] = (constants[5]+constants[6]*constants[4])*(1.00000+0.270000*constants[2]) constants[13] = constants[9]/(power(constants[10], 2.00000)) constants[14] = 1000.00*constants[9] constants[15] = constants[14]*(1.00000+0.700000*constants[2]) constants[16] = (power(constants[12], 2.00000))*constants[14] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = constants[15]*(power(constants[0], 2.00000))*(constants[3]-states[0])-constants[16]*states[0] algebraic[1] = constants[11]*states[0]-constants[13]*(power(constants[1], 2.00000))*(constants[3]-states[0]) rates[0] = algebraic[0]-algebraic[1] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = constants[15]*(power(constants[0], 2.00000))*(constants[3]-states[0])-constants[16]*states[0] algebraic[1] = constants[11]*states[0]-constants[13]*(power(constants[1], 2.00000))*(constants[3]-states[0]) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)