/* There are a total of 31 entries in the algebraic variable array. There are a total of 10 entries in each of the rate and state variable arrays. There are a total of 13 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is C in component membrane (microF_per_cm2). * ALGEBRAIC[0] is i_Na in component fast_sodium_current (microA_per_cm2). * ALGEBRAIC[27] is i_si in component secondary_inward_current (microA_per_cm2). * ALGEBRAIC[28] is i_K2 in component pacemaker_potassium_current (microA_per_cm2). * ALGEBRAIC[29] is i_x1 in component plateau_potassium_current1 (microA_per_cm2). * ALGEBRAIC[30] is i_x2 in component plateau_potassium_current2 (microA_per_cm2). * ALGEBRAIC[19] is i_qr in component transient_chloride_current (microA_per_cm2). * ALGEBRAIC[24] is i_K1 in component time_independent_outward_current (microA_per_cm2). * ALGEBRAIC[25] is i_Na_b in component sodium_background_current (microA_per_cm2). * ALGEBRAIC[26] is i_Cl_b in component chloride_background_current (microA_per_cm2). * CONSTANTS[1] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[2] is g_Na in component fast_sodium_current (milliS_per_cm2). * STATES[1] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[2] is h in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[1] is alpha_m in component fast_sodium_current_m_gate (per_millisecond). * ALGEBRAIC[2] is beta_m in component fast_sodium_current_m_gate (per_millisecond). * ALGEBRAIC[3] is alpha_h in component fast_sodium_current_h_gate (per_millisecond). * ALGEBRAIC[4] is beta_h in component fast_sodium_current_h_gate (per_millisecond). * CONSTANTS[3] is g_si in component secondary_inward_current (milliS_per_cm2). * CONSTANTS[4] is g_si_ in component secondary_inward_current (milliS_per_cm2). * CONSTANTS[5] is E_si in component secondary_inward_current (millivolt). * STATES[3] is d in component secondary_inward_current_d_gate (dimensionless). * STATES[4] is f in component secondary_inward_current_f_gate (dimensionless). * ALGEBRAIC[9] is d1 in component secondary_inward_current_d1_gate (dimensionless). * ALGEBRAIC[5] is alpha_d in component secondary_inward_current_d_gate (per_millisecond). * ALGEBRAIC[6] is beta_d in component secondary_inward_current_d_gate (per_millisecond). * ALGEBRAIC[7] is alpha_f in component secondary_inward_current_f_gate (per_millisecond). * ALGEBRAIC[8] is beta_f in component secondary_inward_current_f_gate (per_millisecond). * ALGEBRAIC[10] is I_K2 in component pacemaker_potassium_current (microA_per_cm2). * CONSTANTS[6] is E_K in component pacemaker_potassium_current (millivolt). * STATES[5] is s in component pacemaker_potassium_current_s_gate (dimensionless). * ALGEBRAIC[11] is alpha_s in component pacemaker_potassium_current_s_gate (per_millisecond). * ALGEBRAIC[12] is beta_s in component pacemaker_potassium_current_s_gate (per_millisecond). * CONSTANTS[7] is E_s in component pacemaker_potassium_current_s_gate (millivolt). * ALGEBRAIC[13] is I_x1 in component plateau_potassium_current1 (microA_per_cm2). * STATES[6] is x1 in component plateau_potassium_current1_x1_gate (dimensionless). * ALGEBRAIC[14] is alpha_x1 in component plateau_potassium_current1_x1_gate (per_millisecond). * ALGEBRAIC[15] is beta_x1 in component plateau_potassium_current1_x1_gate (per_millisecond). * ALGEBRAIC[16] is I_x2 in component plateau_potassium_current2 (microA_per_cm2). * STATES[7] is x2 in component plateau_potassium_current2_x2_gate (dimensionless). * ALGEBRAIC[17] is alpha_x2 in component plateau_potassium_current2_x2_gate (per_millisecond). * ALGEBRAIC[18] is beta_x2 in component plateau_potassium_current2_x2_gate (per_millisecond). * CONSTANTS[8] is E_Cl in component transient_chloride_current (millivolt). * CONSTANTS[9] is g_qr in component transient_chloride_current (milliS_per_cm2). * STATES[8] is q in component transient_chloride_current_q_gate (dimensionless). * STATES[9] is r in component transient_chloride_current_r_gate (dimensionless). * ALGEBRAIC[20] is alpha_q in component transient_chloride_current_q_gate (per_millisecond). * ALGEBRAIC[21] is beta_q in component transient_chloride_current_q_gate (per_millisecond). * ALGEBRAIC[22] is alpha_r in component transient_chloride_current_r_gate (per_millisecond). * ALGEBRAIC[23] is beta_r in component transient_chloride_current_r_gate (per_millisecond). * CONSTANTS[10] is E_K1 in component time_independent_outward_current (millivolt). * CONSTANTS[11] is g_Nab in component sodium_background_current (milliS_per_cm2). * CONSTANTS[12] is g_Clb in component chloride_background_current (milliS_per_cm2). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[1] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[2] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[3] is d/dt d in component secondary_inward_current_d_gate (dimensionless). * RATES[4] is d/dt f in component secondary_inward_current_f_gate (dimensionless). * RATES[5] is d/dt s in component pacemaker_potassium_current_s_gate (dimensionless). * RATES[6] is d/dt x1 in component plateau_potassium_current1_x1_gate (dimensionless). * RATES[7] is d/dt x2 in component plateau_potassium_current2_x2_gate (dimensionless). * RATES[8] is d/dt q in component transient_chloride_current_q_gate (dimensionless). * RATES[9] is d/dt r in component transient_chloride_current_r_gate (dimensionless). * There are a total of 0 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -78.041367; CONSTANTS[0] = 10; CONSTANTS[1] = 40; CONSTANTS[2] = 150; STATES[1] = 0.02566853; STATES[2] = 0.78656359; CONSTANTS[3] = 0.8; CONSTANTS[4] = 0.04; CONSTANTS[5] = 70; STATES[3] = 0.00293135; STATES[4] = 0.80873917; CONSTANTS[6] = -110; STATES[5] = 0.75473994; CONSTANTS[7] = -52; STATES[6] = 0.02030289; STATES[7] = 0.0176854; CONSTANTS[8] = -70; CONSTANTS[9] = 2.5; STATES[8] = 3.11285794; STATES[9] = 0.13500116; CONSTANTS[10] = -30; CONSTANTS[11] = 0.105; CONSTANTS[12] = 0.01; RATES[0] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[0]+ALGEBRAIC[27]+ALGEBRAIC[28]+ALGEBRAIC[29]+ALGEBRAIC[30]+ALGEBRAIC[19]+ALGEBRAIC[24]+ALGEBRAIC[25]+ALGEBRAIC[26])/CONSTANTS[0]; resid[1] = RATES[1] - ALGEBRAIC[1]*(1.00000 - STATES[1]) - ALGEBRAIC[2]*STATES[1]; resid[2] = RATES[2] - ALGEBRAIC[3]*(1.00000 - STATES[2]) - ALGEBRAIC[4]*STATES[2]; resid[3] = RATES[3] - ALGEBRAIC[5]*(1.00000 - STATES[3]) - ALGEBRAIC[6]*STATES[3]; resid[4] = RATES[4] - ALGEBRAIC[7]*(1.00000 - STATES[4]) - ALGEBRAIC[8]*STATES[4]; resid[5] = RATES[5] - ALGEBRAIC[11]*(1.00000 - STATES[5]) - ALGEBRAIC[12]*STATES[5]; resid[6] = RATES[6] - ALGEBRAIC[14]*(1.00000 - STATES[6]) - ALGEBRAIC[15]*STATES[6]; resid[7] = RATES[7] - ALGEBRAIC[17]*(1.00000 - STATES[7]) - ALGEBRAIC[18]*STATES[7]; resid[8] = RATES[8] - ALGEBRAIC[20]*(1.00000 - STATES[8]) - ALGEBRAIC[21]*STATES[8]; resid[9] = RATES[9] - ALGEBRAIC[22]*(1.00000 - STATES[9]) - ALGEBRAIC[23]*STATES[9]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = CONSTANTS[2]*pow(STATES[1], 3.00000)*STATES[2]*(STATES[0] - CONSTANTS[1]); ALGEBRAIC[1] = ( 1.00000*(STATES[0]+47.0000))/(1.00000 - exp(- (STATES[0]+47.0000)/10.0000)); ALGEBRAIC[2] = 40.0000*exp( - 0.0560000*(STATES[0]+72.0000)); ALGEBRAIC[3] = 0.00850000*exp( - 0.184000*(STATES[0]+71.0000)); ALGEBRAIC[4] = 2.50000/(exp( - 0.0820000*(STATES[0]+10.0000))+1.00000); ALGEBRAIC[5] = ( 0.00200000*(STATES[0]+40.0000))/(1.00000 - exp( - 0.100000*(STATES[0]+40.0000))); ALGEBRAIC[6] = 0.0200000*exp( - 0.0888000*(STATES[0]+40.0000)); ALGEBRAIC[7] = 0.000987000*exp( - 0.0400000*(STATES[0]+60.0000)); ALGEBRAIC[8] = 0.0200000/(exp( - 0.0870000*(STATES[0]+26.0000))+1.00000); ALGEBRAIC[11] = ( 0.00100000*(STATES[0] - CONSTANTS[7]))/(1.00000 - exp( - 0.200000*(STATES[0] - CONSTANTS[7]))); ALGEBRAIC[12] = 5.00000e-05*exp( - 0.0670000*(STATES[0] - CONSTANTS[7])); ALGEBRAIC[14] = ( 0.000500000*exp((STATES[0]+50.0000)/12.1000))/(1.00000+exp((STATES[0]+50.0000)/17.5000)); ALGEBRAIC[15] = ( 0.00130000*exp(- (STATES[0]+20.0000)/16.6700))/(1.00000+exp(- (STATES[0]+20.0000)/25.0000)); ALGEBRAIC[17] = ( 0.000127000*1.00000)/(1.00000+exp(- (STATES[0]+19.0000)/5.00000)); ALGEBRAIC[18] = ( 0.000300000*exp(- (STATES[0]+20.0000)/16.6700))/(1.00000+exp(- (STATES[0]+20.0000)/25.0000)); ALGEBRAIC[19] = CONSTANTS[9]*STATES[8]*STATES[9]*(STATES[0] - CONSTANTS[8]); ALGEBRAIC[20] = ( 0.00800000*STATES[0])/(1.00000 - exp( - 0.100000*STATES[0])); ALGEBRAIC[21] = 0.0800000*exp( - 0.0888000*STATES[0]); ALGEBRAIC[22] = 0.000180000*exp( - 0.0400000*(STATES[0]+80.0000)); ALGEBRAIC[23] = 0.0200000/(exp( - 0.0870000*(STATES[0]+26.0000))+1.00000); ALGEBRAIC[10] = ( 2.80000*(exp((STATES[0] - CONSTANTS[6])/25.0000) - 1.00000))/(exp((STATES[0]+60.0000)/12.5000)+exp((STATES[0]+60.0000)/25.0000)); ALGEBRAIC[24] = ALGEBRAIC[10]/2.80000+( 0.200000*(STATES[0] - CONSTANTS[10]))/(1.00000 - exp(- (STATES[0] - CONSTANTS[10])/25.0000)); ALGEBRAIC[25] = CONSTANTS[11]*(STATES[0] - CONSTANTS[1]); ALGEBRAIC[26] = CONSTANTS[12]*(STATES[0] - CONSTANTS[8]); ALGEBRAIC[9] = 1.00000/(1.00000+exp( - 0.150000*(STATES[0]+40.0000))); ALGEBRAIC[27] = CONSTANTS[3]*STATES[3]*STATES[4]*(STATES[0] - CONSTANTS[5])+ CONSTANTS[4]*ALGEBRAIC[9]*(STATES[0] - CONSTANTS[5]); ALGEBRAIC[28] = ALGEBRAIC[10]*STATES[5]; ALGEBRAIC[13] = ( 1.20000*(exp((STATES[0]+95.0000)/25.0000) - 1.00000))/exp((STATES[0]+45.0000)/25.0000); ALGEBRAIC[29] = STATES[6]*ALGEBRAIC[13]; ALGEBRAIC[16] = 25.0000+ 1.00000*0.385000*STATES[0]; ALGEBRAIC[30] = STATES[7]*ALGEBRAIC[16]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { }