# Size of variable arrays: sizeAlgebraic = 4 sizeStates = 4 sizeConstants = 10 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_algebraic[0] = "F in component equations (force)" legend_states[0] = "R_on in component equations (dimensionless)" legend_states[1] = "A in component equations (dimensionless)" legend_constants[0] = "alpha in component equations (dimensionless)" legend_algebraic[1] = "D in component equations (dimensionless)" legend_algebraic[3] = "k_XB in component equations (per_second)" legend_constants[1] = "k_a in component equations (per_second)" legend_states[2] = "x in component equations (um)" legend_constants[2] = "x_0 in component undefined_parameters (um)" legend_constants[3] = "epsilon in component undefined_parameters (force_per_um)" legend_constants[4] = "beta in component undefined_parameters (per_um)" legend_constants[5] = "g in component undefined_parameters (per_second)" legend_constants[6] = "f in component undefined_parameters (per_second)" legend_constants[7] = "k_off in component undefined_parameters (per_second)" legend_constants[8] = "k_on in component undefined_parameters (per_second)" legend_states[3] = "L in component parameters_stelzer_et_al (um)" legend_constants[9] = "L_0 in component parameters_stelzer_et_al (um)" legend_algebraic[2] = "dL_dt in component parameters_stelzer_et_al (um_per_second)" legend_rates[0] = "d/dt R_on in component equations (dimensionless)" legend_rates[1] = "d/dt A in component equations (dimensionless)" legend_rates[2] = "d/dt x in component equations (um)" legend_rates[3] = "d/dt L in component parameters_stelzer_et_al (um)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 1 states[1] = 0 constants[0] = 0.1 constants[1] = 0 states[2] = 1 constants[2] = 1 constants[3] = 1 constants[4] = 2 constants[5] = 1 constants[6] = 1 constants[7] = 1 constants[8] = 1 states[3] = 2.12 constants[9] = 2.12 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[1] = 1.00000-states[1] rates[1] = constants[6]*algebraic[1]*states[0]-constants[5]*states[1] algebraic[2] = custom_piecewise([less(0.00100000 , voi) & less_equal(voi , 0.00300000), 10.6000 , True, 0.00000]) rates[2] = -constants[5]*(states[2]-constants[2])+algebraic[2] rates[3] = algebraic[2] algebraic[3] = constants[1]*states[1] rates[0] = -((constants[7]+algebraic[3]+constants[0]*constants[8])/(1.00000+constants[0])+constants[6]*algebraic[1])*states[0]+(constants[5]-(algebraic[3]+constants[0]*constants[8])/(1.00000+constants[0]))*states[1]+(algebraic[3]+(constants[0]*constants[8])/(1.00000+constants[0]))*constants[4]*(states[3]-constants[9]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = 1.00000-states[1] algebraic[2] = custom_piecewise([less(0.00100000 , voi) & less_equal(voi , 0.00300000), 10.6000 , True, 0.00000]) algebraic[3] = constants[1]*states[1] algebraic[0] = states[1]*constants[3]*states[2] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)