function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =3; end % There are a total of 3 entries in each of the rate and state variable arrays. % There are a total of 13 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component enviroment (second)'); LEGEND_STATES(:,1) = strpad('P in component P (micromolar)'); LEGEND_CONSTANTS(:,1) = strpad('V_p in component P (per_second)'); LEGEND_CONSTANTS(:,2) = strpad('k_p in component P (micromolar)'); LEGEND_CONSTANTS(:,3) = strpad('IPR_3_flux in component P (flux)'); LEGEND_STATES(:,2) = strpad('c in component c (micromolar)'); LEGEND_ALGEBRAIC(:,3) = strpad('J_flux in component J_flux (flux)'); LEGEND_ALGEBRAIC(:,1) = strpad('J_pump in component J_pump (flux)'); LEGEND_CONSTANTS(:,13) = strpad('J_leak in component J_leak (flux)'); LEGEND_CONSTANTS(:,4) = strpad('k_flux in component J_flux (micromolar_per_second)'); LEGEND_ALGEBRAIC(:,2) = strpad('mu in component mu (dimensionless)'); LEGEND_STATES(:,3) = strpad('h in component h (dimensionless)'); LEGEND_CONSTANTS(:,5) = strpad('b in component J_flux (dimensionless)'); LEGEND_CONSTANTS(:,6) = strpad('k_1 in component J_flux (micromolar)'); LEGEND_CONSTANTS(:,7) = strpad('gamma in component J_pump (micromolar_per_second)'); LEGEND_CONSTANTS(:,8) = strpad('k_gamma in component J_pump (micromolar)'); LEGEND_CONSTANTS(:,9) = strpad('beta in component J_leak (flux)'); LEGEND_CONSTANTS(:,10) = strpad('k_mu in component mu (micromolar)'); LEGEND_CONSTANTS(:,11) = strpad('k_2 in component h (micromolar)'); LEGEND_CONSTANTS(:,12) = strpad('tau_h in component h (second)'); LEGEND_RATES(:,1) = strpad('d/dt P in component P (micromolar)'); LEGEND_RATES(:,2) = strpad('d/dt c in component c (micromolar)'); LEGEND_RATES(:,3) = strpad('d/dt h in component h (dimensionless)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 0; CONSTANTS(:,1) = 0.08; CONSTANTS(:,2) = 1; CONSTANTS(:,3) = 0.72; STATES(:,2) = 0.3; CONSTANTS(:,4) = 3; STATES(:,3) = 1; CONSTANTS(:,5) = 0.11; CONSTANTS(:,6) = 0.7; CONSTANTS(:,7) = 1; CONSTANTS(:,8) = 0.27; CONSTANTS(:,9) = 0.15; CONSTANTS(:,10) = 0.01; CONSTANTS(:,11) = 0.7; CONSTANTS(:,12) = 0.2; CONSTANTS(:,13) = CONSTANTS(:,9); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = piecewise({VOI<=15.0000, CONSTANTS(:,3) - ( CONSTANTS(:,1).*STATES(:,1).*CONSTANTS(:,2))./(CONSTANTS(:,2)+STATES(:,1)) }, ( - CONSTANTS(:,1).*STATES(:,1).*CONSTANTS(:,2))./(CONSTANTS(:,2)+STATES(:,1))); RATES(:,3) = (power(CONSTANTS(:,11), 2.00000)./(power(CONSTANTS(:,11), 2.00000)+power(STATES(:,2), 2.00000)) - STATES(:,3))./CONSTANTS(:,12); ALGEBRAIC(:,2) = power(STATES(:,1), 3.00000)./(power(CONSTANTS(:,10), 3.00000)+power(STATES(:,1), 3.00000)); ALGEBRAIC(:,3) = CONSTANTS(:,4).*ALGEBRAIC(:,2).*STATES(:,3).*(CONSTANTS(:,5)+( (1.00000 - CONSTANTS(:,5)).*STATES(:,2))./(CONSTANTS(:,6)+STATES(:,2))); ALGEBRAIC(:,1) = ( CONSTANTS(:,7).*power(STATES(:,2), 2.00000))./(power(CONSTANTS(:,8), 2.00000)+power(STATES(:,2), 2.00000)); RATES(:,2) = (ALGEBRAIC(:,3) - ALGEBRAIC(:,1))+CONSTANTS(:,13); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = power(STATES(:,1), 3.00000)./(power(CONSTANTS(:,10), 3.00000)+power(STATES(:,1), 3.00000)); ALGEBRAIC(:,3) = CONSTANTS(:,4).*ALGEBRAIC(:,2).*STATES(:,3).*(CONSTANTS(:,5)+( (1.00000 - CONSTANTS(:,5)).*STATES(:,2))./(CONSTANTS(:,6)+STATES(:,2))); ALGEBRAIC(:,1) = ( CONSTANTS(:,7).*power(STATES(:,2), 2.00000))./(power(CONSTANTS(:,8), 2.00000)+power(STATES(:,2), 2.00000)); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end