# Size of variable arrays: sizeAlgebraic = 3 sizeStates = 3 sizeConstants = 13 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component enviroment (second)" legend_states[0] = "P in component P (micromolar)" legend_constants[0] = "V_p in component P (per_second)" legend_constants[1] = "k_p in component P (micromolar)" legend_constants[2] = "IPR_3_flux in component P (flux)" legend_states[1] = "c in component c (micromolar)" legend_algebraic[2] = "J_flux in component J_flux (flux)" legend_algebraic[0] = "J_pump in component J_pump (flux)" legend_constants[12] = "J_leak in component J_leak (flux)" legend_constants[3] = "k_flux in component J_flux (micromolar_per_second)" legend_algebraic[1] = "mu in component mu (dimensionless)" legend_states[2] = "h in component h (dimensionless)" legend_constants[4] = "b in component J_flux (dimensionless)" legend_constants[5] = "k_1 in component J_flux (micromolar)" legend_constants[6] = "gamma in component J_pump (micromolar_per_second)" legend_constants[7] = "k_gamma in component J_pump (micromolar)" legend_constants[8] = "beta in component J_leak (flux)" legend_constants[9] = "k_mu in component mu (micromolar)" legend_constants[10] = "k_2 in component h (micromolar)" legend_constants[11] = "tau_h in component h (second)" legend_rates[0] = "d/dt P in component P (micromolar)" legend_rates[1] = "d/dt c in component c (micromolar)" legend_rates[2] = "d/dt h in component h (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0 constants[0] = 0.08 constants[1] = 1 constants[2] = 0.72 states[1] = 0.3 constants[3] = 3 states[2] = 1 constants[4] = 0.11 constants[5] = 0.7 constants[6] = 1 constants[7] = 0.27 constants[8] = 0.15 constants[9] = 0.01 constants[10] = 0.7 constants[11] = 0.2 constants[12] = constants[8] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = custom_piecewise([less_equal(voi , 15.0000), constants[2]-(constants[0]*states[0]*constants[1])/(constants[1]+states[0]) , True, (-constants[0]*states[0]*constants[1])/(constants[1]+states[0])]) rates[2] = ((power(constants[10], 2.00000))/(power(constants[10], 2.00000)+power(states[1], 2.00000))-states[2])/constants[11] algebraic[1] = (power(states[0], 3.00000))/(power(constants[9], 3.00000)+power(states[0], 3.00000)) algebraic[2] = constants[3]*algebraic[1]*states[2]*(constants[4]+((1.00000-constants[4])*states[1])/(constants[5]+states[1])) algebraic[0] = (constants[6]*(power(states[1], 2.00000)))/(power(constants[7], 2.00000)+power(states[1], 2.00000)) rates[1] = (algebraic[2]-algebraic[0])+constants[12] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = (power(states[0], 3.00000))/(power(constants[9], 3.00000)+power(states[0], 3.00000)) algebraic[2] = constants[3]*algebraic[1]*states[2]*(constants[4]+((1.00000-constants[4])*states[1])/(constants[5]+states[1])) algebraic[0] = (constants[6]*(power(states[1], 2.00000)))/(power(constants[7], 2.00000)+power(states[1], 2.00000)) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)