/* There are a total of 45 entries in the algebraic variable array. There are a total of 16 entries in each of the rate and state variable arrays. There are a total of 50 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[45] is RTONF in component membrane (millivolt). * CONSTANTS[3] is C in component membrane (microF). * CONSTANTS[4] is i_pulse in component membrane (nanoA). * ALGEBRAIC[4] is i_f in component hyperpolarising_activated_current (nanoA). * ALGEBRAIC[9] is i_K in component time_dependent_potassium_current (nanoA). * ALGEBRAIC[12] is i_K1 in component time_independent_potassium_current (nanoA). * ALGEBRAIC[13] is i_to in component transient_outward_current (nanoA). * ALGEBRAIC[16] is i_Na_b in component sodium_background_current (nanoA). * ALGEBRAIC[18] is i_Ca_b in component calcium_background_current (nanoA). * ALGEBRAIC[19] is i_p in component sodium_potassium_pump (nanoA). * ALGEBRAIC[20] is i_NaCa in component Na_Ca_exchanger (nanoA). * ALGEBRAIC[22] is i_Na in component fast_sodium_current (nanoA). * ALGEBRAIC[31] is i_si in component second_inward_current (nanoA). * ALGEBRAIC[2] is i_fNa in component hyperpolarising_activated_current (nanoA). * ALGEBRAIC[0] is E_Na in component hyperpolarising_activated_current (millivolt). * ALGEBRAIC[1] is E_K in component hyperpolarising_activated_current (millivolt). * ALGEBRAIC[3] is i_fK in component hyperpolarising_activated_current (nanoA). * CONSTANTS[5] is g_f_Na in component hyperpolarising_activated_current (microS). * CONSTANTS[6] is g_f_K in component hyperpolarising_activated_current (microS). * CONSTANTS[7] is Km_f in component hyperpolarising_activated_current (millimolar). * STATES[1] is Kc in component extracellular_potassium_concentration (millimolar). * STATES[2] is Ki in component intracellular_potassium_concentration (millimolar). * STATES[3] is Nai in component intracellular_sodium_concentration (millimolar). * CONSTANTS[8] is Nao in component extracellular_sodium_concentration (millimolar). * STATES[4] is y in component hyperpolarising_activated_current_y_gate (dimensionless). * ALGEBRAIC[5] is alpha_y in component hyperpolarising_activated_current_y_gate (per_second). * ALGEBRAIC[7] is beta_y in component hyperpolarising_activated_current_y_gate (per_second). * CONSTANTS[9] is delta_y in component hyperpolarising_activated_current_y_gate (millivolt). * ALGEBRAIC[6] is E0_y in component hyperpolarising_activated_current_y_gate (millivolt). * ALGEBRAIC[8] is I_K in component time_dependent_potassium_current (nanoA). * CONSTANTS[10] is i_K_max in component time_dependent_potassium_current (nanoA). * STATES[5] is x in component time_dependent_potassium_current_x_gate (dimensionless). * ALGEBRAIC[10] is alpha_x in component time_dependent_potassium_current_x_gate (per_second). * ALGEBRAIC[11] is beta_x in component time_dependent_potassium_current_x_gate (per_second). * CONSTANTS[11] is g_K1 in component time_independent_potassium_current (microS). * CONSTANTS[12] is Km_K1 in component time_independent_potassium_current (millimolar). * CONSTANTS[13] is Km_to in component transient_outward_current (millimolar). * CONSTANTS[14] is Km_Ca in component transient_outward_current (millimolar). * CONSTANTS[15] is g_to in component transient_outward_current (microS_per_millimolar). * STATES[6] is Cai in component intracellular_calcium_concentration (millimolar). * STATES[7] is s in component transient_outward_current_s_gate (dimensionless). * ALGEBRAIC[14] is alpha_s in component transient_outward_current_s_gate (per_second). * ALGEBRAIC[15] is beta_s in component transient_outward_current_s_gate (per_second). * CONSTANTS[16] is g_Nab in component sodium_background_current (microS). * ALGEBRAIC[17] is E_Ca in component calcium_background_current (millivolt). * CONSTANTS[17] is g_Cab in component calcium_background_current (microS). * CONSTANTS[18] is Cao in component extracellular_calcium_concentration (millimolar). * CONSTANTS[19] is I_p in component sodium_potassium_pump (nanoA). * CONSTANTS[20] is K_mK in component sodium_potassium_pump (millimolar). * CONSTANTS[21] is K_mNa in component sodium_potassium_pump (millimolar). * CONSTANTS[22] is n_NaCa in component Na_Ca_exchanger (dimensionless). * CONSTANTS[23] is K_NaCa in component Na_Ca_exchanger (nanoA). * CONSTANTS[24] is d_NaCa in component Na_Ca_exchanger (dimensionless). * CONSTANTS[25] is gamma in component Na_Ca_exchanger (dimensionless). * CONSTANTS[26] is g_Na in component fast_sodium_current (microS). * ALGEBRAIC[21] is E_mh in component fast_sodium_current (millivolt). * STATES[8] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[9] is h in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[24] is alpha_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[25] is beta_m in component fast_sodium_current_m_gate (per_second). * CONSTANTS[27] is delta_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[23] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[26] is alpha_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[27] is beta_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[28] is i_siCa in component second_inward_current (nanoA). * ALGEBRAIC[29] is i_siK in component second_inward_current (nanoA). * ALGEBRAIC[30] is i_siNa in component second_inward_current (nanoA). * CONSTANTS[28] is P_si in component second_inward_current (nanoA_per_millimolar). * STATES[10] is d in component second_inward_current_d_gate (dimensionless). * STATES[11] is f in component second_inward_current_f_gate (dimensionless). * STATES[12] is f2 in component second_inward_current_f2_gate (dimensionless). * ALGEBRAIC[33] is alpha_d in component second_inward_current_d_gate (per_second). * ALGEBRAIC[34] is beta_d in component second_inward_current_d_gate (per_second). * CONSTANTS[29] is delta_d in component second_inward_current_d_gate (millivolt). * ALGEBRAIC[32] is E0_d in component second_inward_current_d_gate (millivolt). * ALGEBRAIC[36] is alpha_f in component second_inward_current_f_gate (per_second). * ALGEBRAIC[37] is beta_f in component second_inward_current_f_gate (per_second). * CONSTANTS[30] is delta_f in component second_inward_current_f_gate (millivolt). * ALGEBRAIC[35] is E0_f in component second_inward_current_f_gate (millivolt). * CONSTANTS[31] is alpha_f2 in component second_inward_current_f2_gate (per_second). * ALGEBRAIC[38] is beta_f2 in component second_inward_current_f2_gate (per_second). * CONSTANTS[32] is K_mf2 in component second_inward_current_f2_gate (millimolar). * CONSTANTS[33] is radius in component intracellular_sodium_concentration (micrometre). * CONSTANTS[34] is length in component intracellular_sodium_concentration (micrometre). * CONSTANTS[35] is V_e_ratio in component intracellular_sodium_concentration (dimensionless). * CONSTANTS[46] is V_Cell in component intracellular_sodium_concentration (micrometre3). * CONSTANTS[47] is Vi in component intracellular_sodium_concentration (micrometre3). * CONSTANTS[48] is V_up in component intracellular_calcium_concentration (micrometre3). * CONSTANTS[49] is V_rel in component intracellular_calcium_concentration (micrometre3). * ALGEBRAIC[39] is i_up in component intracellular_calcium_concentration (nanoA). * ALGEBRAIC[40] is i_tr in component intracellular_calcium_concentration (nanoA). * ALGEBRAIC[43] is i_rel in component intracellular_calcium_concentration (nanoA). * STATES[13] is Ca_up in component intracellular_calcium_concentration (millimolar). * STATES[14] is Ca_rel in component intracellular_calcium_concentration (millimolar). * CONSTANTS[36] is Ca_up_max in component intracellular_calcium_concentration (millimolar). * CONSTANTS[37] is K_mCa in component intracellular_calcium_concentration (millimolar). * STATES[15] is p in component intracellular_calcium_concentration (dimensionless). * ALGEBRAIC[41] is alpha_p in component intracellular_calcium_concentration (per_second). * ALGEBRAIC[42] is beta_p in component intracellular_calcium_concentration (per_second). * CONSTANTS[38] is tau_up in component intracellular_calcium_concentration (second). * CONSTANTS[39] is tau_rep in component intracellular_calcium_concentration (second). * CONSTANTS[40] is tau_rel in component intracellular_calcium_concentration (second). * CONSTANTS[41] is rCa in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[42] is Ve in component extracellular_potassium_concentration (micrometre3). * CONSTANTS[43] is Kb in component extracellular_potassium_concentration (millimolar). * ALGEBRAIC[44] is i_mK in component extracellular_potassium_concentration (nanoA). * CONSTANTS[44] is pf in component extracellular_potassium_concentration (per_second). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[4] is d/dt y in component hyperpolarising_activated_current_y_gate (dimensionless). * RATES[5] is d/dt x in component time_dependent_potassium_current_x_gate (dimensionless). * RATES[7] is d/dt s in component transient_outward_current_s_gate (dimensionless). * RATES[8] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[9] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[10] is d/dt d in component second_inward_current_d_gate (dimensionless). * RATES[11] is d/dt f in component second_inward_current_f_gate (dimensionless). * RATES[12] is d/dt f2 in component second_inward_current_f2_gate (dimensionless). * RATES[3] is d/dt Nai in component intracellular_sodium_concentration (millimolar). * RATES[15] is d/dt p in component intracellular_calcium_concentration (dimensionless). * RATES[13] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar). * RATES[14] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar). * RATES[6] is d/dt Cai in component intracellular_calcium_concentration (millimolar). * RATES[1] is d/dt Kc in component extracellular_potassium_concentration (millimolar). * RATES[2] is d/dt Ki in component intracellular_potassium_concentration (millimolar). * There are a total of 5 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -87; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 310; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 0.075; CONSTANTS[4] = 0; CONSTANTS[5] = 3; CONSTANTS[6] = 3; CONSTANTS[7] = 45; STATES[1] = 4; STATES[2] = 140; STATES[3] = 8; CONSTANTS[8] = 140; STATES[4] = 0.2; CONSTANTS[9] = 1e-5; CONSTANTS[10] = 180; STATES[5] = 0.01; CONSTANTS[11] = 920; CONSTANTS[12] = 210; CONSTANTS[13] = 10; CONSTANTS[14] = 0.0005; CONSTANTS[15] = 0.28; STATES[6] = 5e-5; STATES[7] = 1; CONSTANTS[16] = 0.18; CONSTANTS[17] = 0.02; CONSTANTS[18] = 2; CONSTANTS[19] = 125; CONSTANTS[20] = 1; CONSTANTS[21] = 40; CONSTANTS[22] = 3; CONSTANTS[23] = 0.02; CONSTANTS[24] = 0.001; CONSTANTS[25] = 0.5; CONSTANTS[26] = 750; STATES[8] = 0.01; STATES[9] = 0.8; CONSTANTS[27] = 1e-5; CONSTANTS[28] = 15; STATES[10] = 0.005; STATES[11] = 1; STATES[12] = 1; CONSTANTS[29] = 0.0001; CONSTANTS[30] = 0.0001; CONSTANTS[31] = 5; CONSTANTS[32] = 0.001; CONSTANTS[33] = 0.05; CONSTANTS[34] = 2; CONSTANTS[35] = 0.1; STATES[13] = 2; STATES[14] = 1; CONSTANTS[36] = 5; CONSTANTS[37] = 0.001; STATES[15] = 1; CONSTANTS[38] = 0.025; CONSTANTS[39] = 2; CONSTANTS[40] = 0.05; CONSTANTS[41] = 2; CONSTANTS[42] = 0.00157; CONSTANTS[43] = 4; CONSTANTS[44] = 0.7; CONSTANTS[45] = ( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2]; CONSTANTS[46] = 3.14159*pow(CONSTANTS[33], 2.00000)*CONSTANTS[34]; CONSTANTS[47] = CONSTANTS[46]*(1.00000 - CONSTANTS[35]); CONSTANTS[48] = CONSTANTS[47]*0.0500000; CONSTANTS[49] = CONSTANTS[47]*0.0200000; RATES[0] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[3] = 0.1001; RATES[15] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[6] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[4]+ALGEBRAIC[9]+ALGEBRAIC[12]+ALGEBRAIC[13]+ALGEBRAIC[16]+ALGEBRAIC[18]+ALGEBRAIC[19]+ALGEBRAIC[20]+ALGEBRAIC[22]+ALGEBRAIC[31]+CONSTANTS[4])/CONSTANTS[3]; resid[1] = RATES[4] - ALGEBRAIC[5]*(1.00000 - STATES[4]) - ALGEBRAIC[7]*STATES[4]; resid[2] = RATES[5] - ALGEBRAIC[10]*(1.00000 - STATES[5]) - ALGEBRAIC[11]*STATES[5]; resid[3] = RATES[7] - ALGEBRAIC[14]*(1.00000 - STATES[7]) - ALGEBRAIC[15]*STATES[7]; resid[4] = RATES[8] - ALGEBRAIC[24]*(1.00000 - STATES[8]) - ALGEBRAIC[25]*STATES[8]; resid[5] = RATES[9] - ALGEBRAIC[26]*(1.00000 - STATES[9]) - ALGEBRAIC[27]*STATES[9]; resid[6] = RATES[10] - ALGEBRAIC[33]*(1.00000 - STATES[10]) - ALGEBRAIC[34]*STATES[10]; resid[7] = RATES[11] - ALGEBRAIC[36]*(1.00000 - STATES[11]) - ALGEBRAIC[37]*STATES[11]; resid[8] = RATES[12] - CONSTANTS[31] - STATES[12]*(CONSTANTS[31]+ALGEBRAIC[38]); resid[9] = RATES[3] - ( - 1.00000*(ALGEBRAIC[22]+ALGEBRAIC[16]+ALGEBRAIC[2]+ALGEBRAIC[30]+ ALGEBRAIC[19]*3.00000+( ALGEBRAIC[20]*CONSTANTS[22])/(CONSTANTS[22] - 2.00000)))/( 1.00000*CONSTANTS[47]*CONSTANTS[2]); resid[10] = RATES[15] - ALGEBRAIC[41]*(1.00000 - STATES[15]) - ALGEBRAIC[42]*STATES[15]; resid[11] = RATES[13] - ( 1.00000*(ALGEBRAIC[39] - ALGEBRAIC[40]))/( 2.00000*1.00000*CONSTANTS[48]*CONSTANTS[2]); resid[12] = RATES[14] - ( 1.00000*(ALGEBRAIC[40] - ALGEBRAIC[43]))/( 2.00000*1.00000*CONSTANTS[49]*CONSTANTS[2]); resid[13] = RATES[6] - ( - 1.00000*((((ALGEBRAIC[28]+ALGEBRAIC[18]) - ( 2.00000*ALGEBRAIC[20])/(CONSTANTS[22] - 2.00000)) - ALGEBRAIC[43])+ALGEBRAIC[39]))/( 2.00000*1.00000*CONSTANTS[47]*CONSTANTS[2]); resid[14] = RATES[1] - - CONSTANTS[44]*(STATES[1] - CONSTANTS[43])+( 1.00000*ALGEBRAIC[44])/( 1.00000*CONSTANTS[42]*CONSTANTS[2]); resid[15] = RATES[2] - ( - 1.00000*ALGEBRAIC[44])/( 1.00000*CONSTANTS[47]*CONSTANTS[2]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = CONSTANTS[45]*log(CONSTANTS[8]/STATES[3]); ALGEBRAIC[2] = (( STATES[4]*STATES[1])/(STATES[1]+CONSTANTS[7]))*CONSTANTS[5]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[1] = CONSTANTS[45]*log(STATES[1]/STATES[2]); ALGEBRAIC[3] = (( STATES[4]*STATES[1])/(STATES[1]+CONSTANTS[7]))*CONSTANTS[6]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[4] = ALGEBRAIC[2]+ALGEBRAIC[3]; ALGEBRAIC[5] = 0.0500000*exp( - 0.0670000*((STATES[0]+52.0000) - 10.0000)); ALGEBRAIC[6] = (STATES[0]+52.0000) - 10.0000; ALGEBRAIC[7] = (CONDVAR[0]<0.00000 ? 2.50000 : ( 1.00000*ALGEBRAIC[6])/(1.00000 - exp( - 0.200000*ALGEBRAIC[6]))); ALGEBRAIC[8] = ( CONSTANTS[10]*(STATES[2] - STATES[1]*exp(- STATES[0]/CONSTANTS[45])))/140.000; ALGEBRAIC[9] = STATES[5]*ALGEBRAIC[8]; ALGEBRAIC[10] = ( 0.500000*exp( 0.0826000*(STATES[0]+50.0000)))/(1.00000+exp( 0.0570000*(STATES[0]+50.0000))); ALGEBRAIC[11] = ( 1.30000*exp( - 0.0600000*(STATES[0]+20.0000)))/(1.00000+exp( - 0.0400000*(STATES[0]+20.0000))); ALGEBRAIC[12] = ( (( CONSTANTS[11]*STATES[1])/(STATES[1]+CONSTANTS[12]))*(STATES[0] - ALGEBRAIC[1]))/(1.00000+exp(( ((STATES[0]+10.0000) - ALGEBRAIC[1])*2.00000)/CONSTANTS[45])); ALGEBRAIC[13] = (( (( STATES[7]*CONSTANTS[15]*(0.200000+STATES[1]/(CONSTANTS[13]+STATES[1]))*STATES[6])/(CONSTANTS[14]+STATES[6]))*(STATES[0]+10.0000))/(1.00000 - exp( - 0.200000*(STATES[0]+10.0000))))*( STATES[2]*exp(( 0.500000*STATES[0])/CONSTANTS[45]) - STATES[1]*exp(( - 0.500000*STATES[0])/CONSTANTS[45])); ALGEBRAIC[14] = 0.0330000*exp(- STATES[0]/17.0000); ALGEBRAIC[15] = 33.0000/(1.00000+exp(- (STATES[0]+10.0000)/8.00000)); ALGEBRAIC[16] = CONSTANTS[16]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[17] = 0.500000*CONSTANTS[45]*log(CONSTANTS[18]/STATES[6]); ALGEBRAIC[18] = CONSTANTS[17]*(STATES[0] - ALGEBRAIC[17]); ALGEBRAIC[19] = ( (( CONSTANTS[19]*STATES[1])/(CONSTANTS[20]+STATES[1]))*STATES[3])/(CONSTANTS[21]+STATES[3]); ALGEBRAIC[20] = ( CONSTANTS[23]*( exp(( CONSTANTS[25]*(CONSTANTS[22] - 2.00000)*STATES[0])/CONSTANTS[45])*pow(STATES[3], CONSTANTS[22])*CONSTANTS[18] - exp(( (CONSTANTS[25] - 1.00000)*(CONSTANTS[22] - 2.00000)*STATES[0])/CONSTANTS[45])*pow(CONSTANTS[8], CONSTANTS[22])*STATES[6]))/( (1.00000+ CONSTANTS[24]*( STATES[6]*pow(CONSTANTS[8], CONSTANTS[22])+ CONSTANTS[18]*pow(STATES[3], CONSTANTS[22])))*(1.00000+STATES[6]/0.00690000)); ALGEBRAIC[21] = CONSTANTS[45]*log((CONSTANTS[8]+ 0.120000*STATES[1])/(STATES[3]+ 0.120000*STATES[2])); ALGEBRAIC[22] = CONSTANTS[26]*pow(STATES[8], 3.00000)*STATES[9]*(STATES[0] - ALGEBRAIC[21]); ALGEBRAIC[23] = STATES[0]+41.0000; ALGEBRAIC[24] = (CONDVAR[1]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[23])/(1.00000 - exp( - 0.100000*ALGEBRAIC[23]))); ALGEBRAIC[25] = 8000.00*exp( - 0.0560000*(STATES[0]+66.0000)); ALGEBRAIC[26] = 20.0000*exp( - 0.125000*(STATES[0]+75.0000)); ALGEBRAIC[27] = 2000.00/( 320.000*exp( - 0.100000*(STATES[0]+75.0000))+1.00000); ALGEBRAIC[28] = (( 4.00000*CONSTANTS[28]*(STATES[0] - 50.0000))/( CONSTANTS[45]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000)*2.00000)/CONSTANTS[45]))))*( STATES[6]*exp(100.000/CONSTANTS[45]) - CONSTANTS[18]*exp(( - 2.00000*(STATES[0] - 50.0000))/CONSTANTS[45]))*STATES[10]*STATES[11]*STATES[12]; ALGEBRAIC[30] = (( 0.0100000*CONSTANTS[28]*(STATES[0] - 50.0000))/( CONSTANTS[45]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[45]))))*( STATES[3]*exp(50.0000/CONSTANTS[45]) - CONSTANTS[8]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[45]))*STATES[10]*STATES[11]*STATES[12]; ALGEBRAIC[29] = (( 0.0100000*CONSTANTS[28]*(STATES[0] - 50.0000))/( CONSTANTS[45]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[45]))))*( STATES[2]*exp(50.0000/CONSTANTS[45]) - STATES[1]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[45]))*STATES[10]*STATES[11]*STATES[12]; ALGEBRAIC[31] = ALGEBRAIC[28]+ALGEBRAIC[29]+ALGEBRAIC[30]; ALGEBRAIC[32] = (STATES[0]+24.0000) - 5.00000; ALGEBRAIC[33] = (CONDVAR[2]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[32])/(1.00000 - exp(( - 1.00000*ALGEBRAIC[32])/4.00000))); ALGEBRAIC[34] = (CONDVAR[3]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[32])/(exp(ALGEBRAIC[32]/10.0000) - 1.00000)); ALGEBRAIC[35] = STATES[0]+34.0000; ALGEBRAIC[36] = (CONDVAR[4]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[35])/(exp(ALGEBRAIC[35]/4.00000) - 1.00000)); ALGEBRAIC[37] = 50.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000)); ALGEBRAIC[38] = ( STATES[6]*CONSTANTS[31])/CONSTANTS[32]; ALGEBRAIC[39] = (( 2.00000*1.00000*CONSTANTS[47]*CONSTANTS[2])/( 1.00000*CONSTANTS[38]*CONSTANTS[36]))*STATES[6]*(CONSTANTS[36] - STATES[13]); ALGEBRAIC[40] = (( 2.00000*1.00000*CONSTANTS[49]*CONSTANTS[2])/( 1.00000*CONSTANTS[39]))*STATES[15]*(STATES[13] - STATES[14]); ALGEBRAIC[41] = ( 0.625000*(STATES[0]+34.0000))/(exp((STATES[0]+34.0000)/4.00000) - 1.00000); ALGEBRAIC[42] = 5.00000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000)); ALGEBRAIC[43] = ( (( 2.00000*1.00000*CONSTANTS[49]*CONSTANTS[2])/( 1.00000*CONSTANTS[40]))*STATES[14]*pow(STATES[6], CONSTANTS[41]))/(pow(STATES[6], CONSTANTS[41])+pow(CONSTANTS[37], CONSTANTS[41])); ALGEBRAIC[44] = (ALGEBRAIC[12]+ALGEBRAIC[9]+ALGEBRAIC[3]+ALGEBRAIC[29]+ALGEBRAIC[13]) - 2.00000*ALGEBRAIC[19]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = fabs(ALGEBRAIC[6]) - CONSTANTS[9]; CONDVAR[1] = fabs(ALGEBRAIC[23]) - CONSTANTS[27]; CONDVAR[2] = fabs(ALGEBRAIC[32]) - CONSTANTS[29]; CONDVAR[3] = fabs(ALGEBRAIC[32]) - CONSTANTS[29]; CONDVAR[4] = fabs(ALGEBRAIC[35]) - CONSTANTS[30]; }