# Size of variable arrays: sizeAlgebraic = 6 sizeStates = 4 sizeConstants = 22 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (minute)" legend_states[0] = "m in component m (micromolar)" legend_constants[0] = "kM_plus in component m (fourth_order_rate_constant)" legend_constants[1] = "kM_minus in component m (first_order_rate_constant)" legend_constants[2] = "CaMtotal in component m (micromolar)" legend_states[1] = "x in component x (micromolar)" legend_algebraic[0] = "dmdt in component m (flux)" legend_states[2] = "z in component z (micromolar)" legend_constants[3] = "kN_plus in component z (second_order_rate_constant)" legend_constants[4] = "kN_minus in component z (first_order_rate_constant)" legend_constants[5] = "CaNtotal in component z (micromolar)" legend_algebraic[1] = "dzdt in component z (flux)" legend_states[3] = "h in component h (dimensionless)" legend_constants[6] = "d in component h (first_order_rate_constant)" legend_constants[7] = "f in component h (first_order_rate_constant)" legend_algebraic[3] = "phi in component phi (dimensionless)" legend_constants[8] = "lamda in component model_parameters (dimensionless)" legend_constants[21] = "L0 in component model_parameters (dimensionless)" legend_algebraic[2] = "y in component model_parameters (dimensionless)" legend_constants[9] = "N in component model_parameters (dimensionless)" legend_algebraic[4] = "psi in component psi (dimensionless)" legend_constants[10] = "Vx in component x (flux)" legend_constants[11] = "Kx in component x (micromolar)" legend_constants[12] = "V1 in component x (flux)" legend_constants[13] = "K1 in component x (micromolar)" legend_constants[14] = "V2 in component x (flux)" legend_constants[15] = "K2 in component x (micromolar)" legend_constants[16] = "V3 in component x (flux)" legend_constants[17] = "K3 in component x (micromolar)" legend_constants[18] = "kc in component x (dimensionless)" legend_constants[19] = "alpha in component x (first_order_rate_constant)" legend_constants[20] = "Caex in component x (micromolar)" legend_algebraic[5] = "dxdt in component x (flux)" legend_rates[0] = "d/dt m in component m (micromolar)" legend_rates[2] = "d/dt z in component z (micromolar)" legend_rates[3] = "d/dt h in component h (dimensionless)" legend_rates[1] = "d/dt x in component x (micromolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.0 constants[0] = 500.0 constants[1] = 100.0 constants[2] = 25.0 states[1] = 0.0 states[2] = 1.0E-8 constants[3] = 5.0 constants[4] = 5.0 constants[5] = 25.0 states[3] = 0.0 constants[6] = 0.4 constants[7] = 0.1 constants[8] = 5.0 constants[9] = 13.0 constants[10] = 1000.0 constants[11] = 500.0 constants[12] = 30000.0 constants[13] = 4.3 constants[14] = 100.0 constants[15] = 0.1 constants[16] = 10000.0 constants[17] = 100.0 constants[18] = 10.0 constants[19] = 0.006 constants[20] = 1.0 constants[21] = power(10.0000, -(constants[9]/2.00000)) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = constants[0]*(constants[2]-states[0])*(power(states[1], 3.00000))-constants[1]*states[0] rates[2] = constants[3]*(constants[5]-states[2])*states[0]-constants[4]*states[2] algebraic[2] = 1.00000/states[2] algebraic[3] = 1.00000/(1.00000+(constants[21]*(power(constants[8]*algebraic[2], constants[9]+1.00000)-1.00000))/((constants[8]*algebraic[2]-1.00000)*((algebraic[2]-1.00000)/(power(algebraic[2], constants[9]+1.00000)-1.00000)))) rates[3] = constants[6]*algebraic[3]*(1.00000/states[2])*(1.00000-states[3])-constants[7]*(1.00000-algebraic[3]*(1.00000/states[2]))*states[3] algebraic[4] = (1.00000+constants[21])/((power(algebraic[2], constants[9]+1.00000)-1.00000)/(algebraic[2]-1.00000)+constants[21]*((power(constants[8]*algebraic[2], constants[9]+1.00000)-1.00000)/(constants[8]*algebraic[2]-1.00000))) rates[1] = (constants[10]*constants[20])/(constants[11]+constants[20])-(states[3]*algebraic[4]*(1.00000/states[2])*((constants[12]*states[1])/(constants[13]+states[1]))+states[3]*algebraic[4]*(1.00000/states[2])*((constants[14]*states[1])/(constants[15]+states[1]))+(1.00000/(1.00000+constants[18]*states[2]))*((constants[16]*states[1])/(constants[17]+states[1]))+constants[19]*states[1]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[2] = 1.00000/states[2] algebraic[3] = 1.00000/(1.00000+(constants[21]*(power(constants[8]*algebraic[2], constants[9]+1.00000)-1.00000))/((constants[8]*algebraic[2]-1.00000)*((algebraic[2]-1.00000)/(power(algebraic[2], constants[9]+1.00000)-1.00000)))) algebraic[4] = (1.00000+constants[21])/((power(algebraic[2], constants[9]+1.00000)-1.00000)/(algebraic[2]-1.00000)+constants[21]*((power(constants[8]*algebraic[2], constants[9]+1.00000)-1.00000)/(constants[8]*algebraic[2]-1.00000))) algebraic[0] = constants[0]*(constants[2]-states[0])*(power(states[1], 3.00000))-constants[1]*states[0] algebraic[1] = constants[3]*(constants[5]-states[2])*states[0]-constants[4]*states[2] algebraic[5] = (constants[10]*constants[20])/(constants[11]+constants[20])-(states[3]*algebraic[4]*(1.00000/states[2])*((constants[12]*states[1])/(constants[13]+states[1]))+states[3]*algebraic[4]*(1.00000/states[2])*((constants[14]*states[1])/(constants[15]+states[1]))+(1.00000/(1.00000+constants[18]*states[2]))*((constants[16]*states[1])/(constants[17]+states[1]))+constants[19]*states[1]) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)