# Size of variable arrays: sizeAlgebraic = 24 sizeStates = 22 sizeConstants = 60 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (minute)" legend_constants[0] = "Glc_x_0 in component Glc_x_0 (millimolar)" legend_states[0] = "Glc_x in component Glc_x (millimolar)" legend_algebraic[1] = "GlcTrans in component GlcTrans (flux)" legend_algebraic[0] = "inGlc in component inGlc (flux)" legend_states[1] = "Glc in component Glc (millimolar)" legend_algebraic[2] = "HK in component HK (flux)" legend_states[2] = "G6P in component G6P (millimolar)" legend_algebraic[3] = "PGI in component PGI (flux)" legend_algebraic[10] = "storage in component storage (flux)" legend_states[3] = "F6P in component F6P (millimolar)" legend_algebraic[4] = "PFK in component PFK (flux)" legend_states[4] = "FBP in component FBP (millimolar)" legend_algebraic[5] = "ALD in component ALD (flux)" legend_states[5] = "GAP in component GAP (millimolar)" legend_algebraic[7] = "GAPDH in component GAPDH (flux)" legend_algebraic[6] = "TIM in component TIM (flux)" legend_states[6] = "DHAP in component DHAP (millimolar)" legend_algebraic[14] = "lpGlyc in component lpGlyc (flux)" legend_states[7] = "BPG in component BPG (millimolar)" legend_algebraic[8] = "lpPEP in component lpPEP (flux)" legend_states[8] = "PEP in component PEP (millimolar)" legend_algebraic[9] = "PK in component PK (flux)" legend_states[9] = "Pyr in component Pyr (millimolar)" legend_algebraic[11] = "PDC in component PDC (flux)" legend_states[10] = "ATP in component ATP (millimolar)" legend_algebraic[12] = "consum in component consum (flux)" legend_algebraic[15] = "AK in component AK (flux)" legend_states[11] = "ADP in component ADP (millimolar)" legend_states[12] = "AMP in component AMP (millimolar)" legend_constants[1] = "CN_x_0 in component CN_x_0 (millimolar)" legend_states[13] = "CN_x in component CN_x (millimolar)" legend_algebraic[21] = "lacto in component lacto (flux)" legend_algebraic[23] = "inCN in component inCN (flux)" legend_states[14] = "ACA in component ACA (millimolar)" legend_algebraic[18] = "difACA in component difACA (flux)" legend_algebraic[13] = "ADH in component ADH (flux)" legend_states[15] = "ACA_x in component ACA_x (millimolar)" legend_algebraic[16] = "outACA in component outACA (flux)" legend_states[16] = "EtOH in component EtOH (millimolar)" legend_algebraic[19] = "difEtOH in component difEtOH (flux)" legend_states[17] = "EtOH_x in component EtOH_x (millimolar)" legend_algebraic[17] = "outEtOH in component outEtOH (flux)" legend_states[18] = "Glyc in component Glyc (millimolar)" legend_algebraic[22] = "difGlyc in component difGlyc (flux)" legend_states[19] = "Glyc_x in component Glyc_x (millimolar)" legend_algebraic[20] = "outGlyc in component outGlyc (flux)" legend_states[20] = "NADH in component NADH (millimolar)" legend_states[21] = "NAD in component NAD (millimolar)" legend_constants[2] = "k0 in component model_parameters (first_order_rate_constant)" legend_constants[3] = "K2_Glc in component GlcTrans (millimolar)" legend_constants[4] = "K2_IG6P in component GlcTrans (millimolar)" legend_constants[5] = "K2_IIG6P in component GlcTrans (millimolar)" legend_constants[6] = "V_2m in component GlcTrans (flux)" legend_constants[7] = "P2 in component GlcTrans (dimensionless)" legend_constants[8] = "y_vol in component model_parameters (dimensionless)" legend_constants[9] = "K3_DGlc in component HK (millimolar)" legend_constants[10] = "K3_Glc in component HK (millimolar)" legend_constants[11] = "K3_ATP in component HK (millimolar)" legend_constants[12] = "V_3m in component HK (flux)" legend_constants[13] = "V_4m in component PGI (flux)" legend_constants[14] = "K4_G6P in component PGI (millimolar)" legend_constants[15] = "K4_F6P in component PGI (millimolar)" legend_constants[16] = "K4_eq in component PGI (dimensionless)" legend_constants[17] = "K5 in component PFK (millimolar2)" legend_constants[18] = "kappa5 in component PFK (dimensionless)" legend_constants[19] = "V_5m in component PFK (flux)" legend_constants[20] = "K6_eq in component ALD (millimolar)" legend_constants[21] = "K6_FBP in component ALD (millimolar)" legend_constants[22] = "K6_DHAP in component ALD (millimolar)" legend_constants[23] = "K6_GAP in component ALD (millimolar)" legend_constants[24] = "K6_IGAP in component ALD (millimolar)" legend_constants[25] = "V_6r in component ALD (flux)" legend_constants[26] = "V_6f in component ALD (flux)" legend_constants[27] = "K7_eq in component TIM (dimensionless)" legend_constants[28] = "K7_DHAP in component TIM (millimolar)" legend_constants[29] = "K7_GAP in component TIM (millimolar)" legend_constants[30] = "V_7m in component TIM (flux)" legend_constants[31] = "K8_NAD in component GAPDH (millimolar)" legend_constants[32] = "K8_NADH in component GAPDH (millimolar)" legend_constants[33] = "K8_GAP in component GAPDH (millimolar)" legend_constants[34] = "K8_BPG in component GAPDH (millimolar)" legend_constants[35] = "K8_eq in component GAPDH (dimensionless)" legend_constants[36] = "V_8m in component GAPDH (flux)" legend_constants[37] = "k9f in component lpPEP (second_order_rate_constant)" legend_constants[38] = "k9r in component lpPEP (second_order_rate_constant)" legend_constants[39] = "K10_PEP in component PK (millimolar)" legend_constants[40] = "K10_ADP in component PK (millimolar)" legend_constants[41] = "V_10m in component PK (flux)" legend_constants[42] = "K11 in component PDC (millimolar)" legend_constants[43] = "V_11m in component PDC (flux)" legend_constants[44] = "K12_NADH in component ADH (millimolar)" legend_constants[45] = "K12_ACA in component ADH (millimolar)" legend_constants[46] = "V_12m in component ADH (flux)" legend_constants[47] = "k13 in component difEtOH (first_order_rate_constant)" legend_constants[48] = "K15_NADH in component lpGlyc (millimolar)" legend_constants[49] = "K15_INADH in component lpGlyc (millimolar)" legend_constants[50] = "K15_INAD in component lpGlyc (millimolar)" legend_constants[51] = "K15_DHAP in component lpGlyc (millimolar)" legend_constants[52] = "V_15m in component lpGlyc (flux)" legend_constants[53] = "k16 in component difGlyc (first_order_rate_constant)" legend_constants[54] = "k18 in component difACA (first_order_rate_constant)" legend_constants[55] = "k20 in component lacto (second_order_rate_constant)" legend_constants[56] = "k22 in component storage (second_order_rate_constant)" legend_constants[57] = "k23 in component consum (first_order_rate_constant)" legend_constants[58] = "k24f in component AK (second_order_rate_constant)" legend_constants[59] = "k24r in component AK (second_order_rate_constant)" legend_rates[0] = "d/dt Glc_x in component Glc_x (millimolar)" legend_rates[1] = "d/dt Glc in component Glc (millimolar)" legend_rates[2] = "d/dt G6P in component G6P (millimolar)" legend_rates[3] = "d/dt F6P in component F6P (millimolar)" legend_rates[4] = "d/dt FBP in component FBP (millimolar)" legend_rates[5] = "d/dt GAP in component GAP (millimolar)" legend_rates[6] = "d/dt DHAP in component DHAP (millimolar)" legend_rates[7] = "d/dt BPG in component BPG (millimolar)" legend_rates[8] = "d/dt PEP in component PEP (millimolar)" legend_rates[9] = "d/dt Pyr in component Pyr (millimolar)" legend_rates[10] = "d/dt ATP in component ATP (millimolar)" legend_rates[11] = "d/dt ADP in component ADP (millimolar)" legend_rates[12] = "d/dt AMP in component AMP (millimolar)" legend_rates[13] = "d/dt CN_x in component CN_x (millimolar)" legend_rates[14] = "d/dt ACA in component ACA (millimolar)" legend_rates[15] = "d/dt ACA_x in component ACA_x (millimolar)" legend_rates[16] = "d/dt EtOH in component EtOH (millimolar)" legend_rates[17] = "d/dt EtOH_x in component EtOH_x (millimolar)" legend_rates[18] = "d/dt Glyc in component Glyc (millimolar)" legend_rates[19] = "d/dt Glyc_x in component Glyc_x (millimolar)" legend_rates[20] = "d/dt NADH in component NADH (millimolar)" legend_rates[21] = "d/dt NAD in component NAD (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 24.0 states[0] = 6.7 states[1] = 0.573074 states[2] = 4.2 states[3] = 0.49 states[4] = 4.64 states[5] = 0.115 states[6] = 2.95 states[7] = 0.00027 states[8] = 0.04 states[9] = 8.7 states[10] = 2.1 states[11] = 1.5 states[12] = 0.33 constants[1] = 5.60 states[13] = 5.20358 states[14] = 1.48153 states[15] = 1.28836 states[16] = 19.2379 states[17] = 16.4514 states[18] = 4.196 states[19] = 1.68478 states[20] = 0.33 states[21] = 0.65 constants[2] = 0.048 constants[3] = 1.7 constants[4] = 1.2 constants[5] = 7.2 constants[6] = 1014.96 constants[7] = 1.0 constants[8] = 59.0 constants[9] = 0.37 constants[10] = 0.0 constants[11] = 0.1 constants[12] = 51.7547 constants[13] = 496.042 constants[14] = 0.8 constants[15] = 0.15 constants[16] = 0.13 constants[17] = 0.021 constants[18] = 0.15 constants[19] = 45.4327 constants[20] = 0.081 constants[21] = 0.3 constants[22] = 2.0 constants[23] = 4.0 constants[24] = 10.0 constants[25] = 1.10391E4 constants[26] = 2.20782E3 constants[27] = 0.055 constants[28] = 1.23 constants[29] = 1.27 constants[30] = 1.16365E2 constants[31] = 0.1 constants[32] = 0.06 constants[33] = 0.6 constants[34] = 0.01 constants[35] = 0.0055 constants[36] = 8.33858E2 constants[37] = 4.43866E5 constants[38] = 1.52862E3 constants[39] = 0.2 constants[40] = 0.17 constants[41] = 3.43096E2 constants[42] = 0.3 constants[43] = 5.31328E1 constants[44] = 0.1 constants[45] = 0.71 constants[46] = 8.98023E1 constants[47] = 16.72 constants[48] = 0.13 constants[49] = 0.034 constants[50] = 0.13 constants[51] = 25.0 constants[52] = 8.14797E1 constants[53] = 1.9 constants[54] = 24.7 constants[55] = 2.83828E-3 constants[56] = 2.25932 constants[57] = 3.20760 constants[58] = 4.32900E2 constants[59] = 1.33333E2 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[1] = (constants[6]/constants[8])*((states[0]/constants[3])/(1.00000+states[0]/constants[3]+((constants[7]*(states[0]/constants[3])+1.00000)/(constants[7]*(states[1]/constants[3])+1.00000))*(1.00000+states[1]/constants[3]+states[2]/constants[4]+(states[1]*states[2])/(constants[3]*constants[5]))))-(constants[6]/constants[8])*((states[1]/constants[3])/(1.00000+states[1]/constants[3]+((constants[7]*(states[1]/constants[3])+1.00000)/(constants[7]*(states[0]/constants[3])+1.00000))*(1.00000+states[0]/constants[3])+states[2]/constants[4]+(states[1]*states[2])/(constants[3]*constants[5]))) algebraic[0] = constants[2]*(constants[0]-states[0]) rates[0] = algebraic[0]-algebraic[1] algebraic[2] = (constants[12]*states[10]*states[1])/(constants[9]*constants[11]+constants[10]*states[10]+constants[11]*states[1]+states[1]*states[10]) rates[1] = 59.0000*algebraic[1]-algebraic[2] algebraic[3] = (constants[13]*states[2])/(constants[14]+states[2]+(constants[14]/constants[15])*states[3])-(constants[13]*(states[3]/constants[16]))/(constants[14]+states[2]+(constants[14]/constants[15])*states[3]) algebraic[4] = (constants[19]*(power(states[3], 2.00000)))/(constants[17]*(1.00000+constants[18]*(states[10]/states[12])*(states[10]/states[12]))+power(states[3], 2.00000)) rates[3] = algebraic[3]-algebraic[4] algebraic[5] = (constants[26]*states[4])/(constants[21]+states[4]+(states[5]*constants[22]*constants[26])/(constants[20]*constants[25])+(states[6]*constants[23]*constants[26])/(constants[20]*constants[25])+(states[4]*states[5])/constants[24]+(states[5]*states[6]*constants[26])/(constants[20]*constants[25]))-(constants[26]*((states[5]*states[6])/constants[20]))/(constants[21]+states[4]+(states[5]*constants[22]*constants[26])/(constants[20]*constants[25])+(states[6]*constants[23]*constants[26])/(constants[20]*constants[25])+(states[4]*states[5])/constants[24]+(states[5]*states[6]*constants[26])/(constants[20]*constants[25])) rates[4] = algebraic[4]-algebraic[5] algebraic[7] = (constants[36]*states[5]*states[21])/(constants[33]*constants[31]*(1.00000+states[5]/constants[33]+states[7]/constants[34])*(1.00000+states[21]/constants[31]+states[20]/constants[32]))-(constants[36]*((states[7]*states[20])/constants[35]))/(constants[33]*constants[31]*(1.00000+states[5]/constants[33]+states[7]/constants[34])*(1.00000+states[21]/constants[31]+states[20]/constants[32])) algebraic[6] = (constants[30]*states[6])/(constants[28]+states[6]+(constants[28]/constants[29])*states[5])-(constants[30]*(states[5]/constants[27]))/(constants[28]+states[6]+(constants[28]/constants[29])*states[5]) rates[5] = (algebraic[5]+algebraic[6])-algebraic[7] algebraic[8] = constants[37]*states[7]*states[11]-constants[38]*states[8]*states[10] rates[7] = algebraic[7]-algebraic[8] algebraic[9] = (constants[41]*states[11]*states[8])/((constants[39]+states[8])*(constants[40]+states[11])) rates[8] = algebraic[8]-algebraic[9] algebraic[10] = constants[56]*states[10]*states[2] rates[2] = algebraic[2]-(algebraic[3]+algebraic[10]) algebraic[11] = (constants[43]*states[9])/(constants[42]+states[9]) rates[9] = algebraic[9]-algebraic[11] algebraic[14] = (constants[52]*states[6])/(constants[51]*(1.00000+(constants[49]/states[20])*(1.00000+states[21]/constants[50]))+states[6]*(1.00000+(constants[48]/states[20])*(1.00000+states[21]/constants[50]))) rates[6] = algebraic[5]-(algebraic[6]+algebraic[14]) algebraic[12] = constants[57]*states[10] algebraic[15] = constants[58]*states[12]*states[10]-constants[59]*(power(states[11], 2.00000)) rates[10] = (algebraic[9]+algebraic[8])-(algebraic[4]+algebraic[10]+algebraic[2]+algebraic[12]+algebraic[15]) rates[11] = (algebraic[4]+algebraic[10]+algebraic[2]+algebraic[12]+2.00000*algebraic[15])-(algebraic[9]+algebraic[8]) rates[12] = -algebraic[15] algebraic[13] = (constants[46]*states[14]*states[20])/((constants[44]+states[20])*(constants[45]+states[14])) rates[20] = algebraic[7]-(algebraic[13]+algebraic[14]) rates[21] = (algebraic[13]+algebraic[14])-algebraic[7] algebraic[18] = (constants[54]/constants[8])*(states[14]-states[15]) rates[14] = algebraic[11]-(59.0000*algebraic[18]+algebraic[13]) algebraic[19] = (constants[47]/constants[8])*(states[16]-states[17]) rates[16] = algebraic[13]-59.0000*algebraic[19] algebraic[17] = constants[2]*states[17] rates[17] = algebraic[19]-algebraic[17] algebraic[21] = constants[55]*states[15]*states[13] algebraic[16] = constants[2]*states[15] rates[15] = algebraic[18]-(algebraic[21]+algebraic[16]) algebraic[22] = (constants[53]/constants[8])*(states[18]-states[19]) rates[18] = algebraic[14]-59.0000*algebraic[22] algebraic[20] = constants[2]*states[19] rates[19] = algebraic[22]-algebraic[20] algebraic[23] = constants[2]*(constants[1]-states[13]) rates[13] = algebraic[23]-algebraic[21] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = (constants[6]/constants[8])*((states[0]/constants[3])/(1.00000+states[0]/constants[3]+((constants[7]*(states[0]/constants[3])+1.00000)/(constants[7]*(states[1]/constants[3])+1.00000))*(1.00000+states[1]/constants[3]+states[2]/constants[4]+(states[1]*states[2])/(constants[3]*constants[5]))))-(constants[6]/constants[8])*((states[1]/constants[3])/(1.00000+states[1]/constants[3]+((constants[7]*(states[1]/constants[3])+1.00000)/(constants[7]*(states[0]/constants[3])+1.00000))*(1.00000+states[0]/constants[3])+states[2]/constants[4]+(states[1]*states[2])/(constants[3]*constants[5]))) algebraic[0] = constants[2]*(constants[0]-states[0]) algebraic[2] = (constants[12]*states[10]*states[1])/(constants[9]*constants[11]+constants[10]*states[10]+constants[11]*states[1]+states[1]*states[10]) algebraic[3] = (constants[13]*states[2])/(constants[14]+states[2]+(constants[14]/constants[15])*states[3])-(constants[13]*(states[3]/constants[16]))/(constants[14]+states[2]+(constants[14]/constants[15])*states[3]) algebraic[4] = (constants[19]*(power(states[3], 2.00000)))/(constants[17]*(1.00000+constants[18]*(states[10]/states[12])*(states[10]/states[12]))+power(states[3], 2.00000)) algebraic[5] = (constants[26]*states[4])/(constants[21]+states[4]+(states[5]*constants[22]*constants[26])/(constants[20]*constants[25])+(states[6]*constants[23]*constants[26])/(constants[20]*constants[25])+(states[4]*states[5])/constants[24]+(states[5]*states[6]*constants[26])/(constants[20]*constants[25]))-(constants[26]*((states[5]*states[6])/constants[20]))/(constants[21]+states[4]+(states[5]*constants[22]*constants[26])/(constants[20]*constants[25])+(states[6]*constants[23]*constants[26])/(constants[20]*constants[25])+(states[4]*states[5])/constants[24]+(states[5]*states[6]*constants[26])/(constants[20]*constants[25])) algebraic[7] = (constants[36]*states[5]*states[21])/(constants[33]*constants[31]*(1.00000+states[5]/constants[33]+states[7]/constants[34])*(1.00000+states[21]/constants[31]+states[20]/constants[32]))-(constants[36]*((states[7]*states[20])/constants[35]))/(constants[33]*constants[31]*(1.00000+states[5]/constants[33]+states[7]/constants[34])*(1.00000+states[21]/constants[31]+states[20]/constants[32])) algebraic[6] = (constants[30]*states[6])/(constants[28]+states[6]+(constants[28]/constants[29])*states[5])-(constants[30]*(states[5]/constants[27]))/(constants[28]+states[6]+(constants[28]/constants[29])*states[5]) algebraic[8] = constants[37]*states[7]*states[11]-constants[38]*states[8]*states[10] algebraic[9] = (constants[41]*states[11]*states[8])/((constants[39]+states[8])*(constants[40]+states[11])) algebraic[10] = constants[56]*states[10]*states[2] algebraic[11] = (constants[43]*states[9])/(constants[42]+states[9]) algebraic[14] = (constants[52]*states[6])/(constants[51]*(1.00000+(constants[49]/states[20])*(1.00000+states[21]/constants[50]))+states[6]*(1.00000+(constants[48]/states[20])*(1.00000+states[21]/constants[50]))) algebraic[12] = constants[57]*states[10] algebraic[15] = constants[58]*states[12]*states[10]-constants[59]*(power(states[11], 2.00000)) algebraic[13] = (constants[46]*states[14]*states[20])/((constants[44]+states[20])*(constants[45]+states[14])) algebraic[18] = (constants[54]/constants[8])*(states[14]-states[15]) algebraic[19] = (constants[47]/constants[8])*(states[16]-states[17]) algebraic[17] = constants[2]*states[17] algebraic[21] = constants[55]*states[15]*states[13] algebraic[16] = constants[2]*states[15] algebraic[22] = (constants[53]/constants[8])*(states[18]-states[19]) algebraic[20] = constants[2]*states[19] algebraic[23] = constants[2]*(constants[1]-states[13]) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)