# Size of variable arrays: sizeAlgebraic = 0 sizeStates = 0 sizeConstants = 30 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_constants[28] = "SHbO2 in component SHbO2 (dimensionless)" legend_constants[26] = "KHbO2 in component KHbO2 (per_molar)" legend_constants[20] = "O2 in component O2 (molar)" legend_constants[29] = "SHbCO2 in component SHbCO2 (dimensionless)" legend_constants[27] = "KHbCO2 in component KHbCO2 (per_molar)" legend_constants[22] = "CO2 in component CO2 (molar)" legend_constants[24] = "Hrbc in component model_parameters (molar)" legend_constants[0] = "K2 in component model_parameters (per_molar)" legend_constants[1] = "K2_ in component model_parameters (molar)" legend_constants[2] = "K3 in component model_parameters (per_molar)" legend_constants[3] = "K3_ in component model_parameters (molar)" legend_constants[25] = "K4 in component K4 (per_molar)" legend_constants[4] = "K5_ in component model_parameters (molar)" legend_constants[5] = "K6_ in component model_parameters (molar)" legend_constants[6] = "O2_S in component model_parameters (micromolar)" legend_constants[7] = "H_S in component model_parameters (nanomolar)" legend_constants[8] = "n1 in component model_parameters (dimensionless)" legend_constants[9] = "n2 in component model_parameters (dimensionless)" legend_constants[10] = "CO2_S in component model_parameters (millimolar)" legend_constants[11] = "K4_ in component model_parameters (per_molar)" legend_constants[12] = "n0 in component model_parameters (dimensionless)" legend_constants[19] = "alpha_O2 in component alpha_O2 (M_mmHg)" legend_constants[13] = "PO2 in component model_parameters (mmHg)" legend_constants[21] = "alpha_CO2 in component alpha_CO2 (M_mmHg)" legend_constants[14] = "PCO2 in component model_parameters (mmHg)" legend_constants[15] = "Wpl in component model_parameters (ml_ml)" legend_constants[16] = "T in component model_parameters (celsius)" legend_constants[17] = "Rrbc in component model_parameters (dimensionless)" legend_constants[23] = "Hpl in component model_parameters (molar)" legend_constants[18] = "pHpl in component model_parameters (pH)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 29.5 constants[1] = 1E-6 constants[2] = 25.1 constants[3] = 1E-6 constants[4] = 2.63E-8 constants[5] = 1.91E-8 constants[6] = 146.0 constants[7] = 57.5 constants[8] = 1.06 constants[9] = 0.12 constants[10] = 1.31 constants[11] = 202123.0 constants[12] = 1.7 constants[13] = 100.0 constants[14] = 40.0 constants[15] = 0.94 constants[16] = 37.0 constants[17] = 0.69 constants[18] = 7.24 constants[19] = ((1.37000-0.0137000*(constants[16]-37.0000))+0.000580000*(power(constants[16]-37.0000, 2.00000)))*(1.00000e-06/constants[15]) constants[20] = constants[19]*constants[13] constants[21] = ((3.07000-0.0570000*(constants[16]-37.0000))+0.00200000*(power(constants[16]-37.0000, 2.00000)))*(1.00000e-05/constants[15]) constants[22] = constants[21]*constants[14] constants[23] = power(10.0000, -constants[18]) constants[24] = constants[23]/constants[17] constants[25] = constants[11]*(power(constants[20]/constants[6], constants[12]))*(power(constants[24]/constants[7], -constants[8]))*(power(constants[22]/constants[10], -constants[9])) constants[26] = (constants[25]*(constants[2]*constants[22]*(1.00000+constants[3]/constants[24])+(1.00000+constants[24]/constants[5])))/(constants[0]*constants[22]*(1.00000+constants[1]/constants[24])+(1.00000+constants[24]/constants[4])) constants[27] = (constants[0]*(1.00000+constants[1]/constants[24])+constants[2]*constants[25]*(1.00000+constants[3]/constants[24])*constants[20])/(1.00000+constants[24]/constants[4]+constants[25]*(1.00000+constants[24]/constants[5])*constants[20]) constants[28] = (constants[26]*constants[20])/(1.00000+constants[26]*constants[20]) constants[29] = (constants[27]*constants[22])/(1.00000+constants[27]*constants[22]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)