/* There are a total of 70 entries in the algebraic variable array. There are a total of 30 entries in each of the rate and state variable arrays. There are a total of 51 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (millijoule_per_mole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (nanoF). * ALGEBRAIC[2] is Q_tot in component membrane (millivolt). * ALGEBRAIC[64] is i_Na in component sodium_current (picoA). * ALGEBRAIC[65] is i_Ca_L in component L_type_Ca_channel (picoA). * ALGEBRAIC[66] is i_t in component Ca_independent_transient_outward_K_current (picoA). * ALGEBRAIC[25] is i_Kur in component ultra_rapid_K_current (picoA). * ALGEBRAIC[30] is i_K1 in component inward_rectifier (picoA). * ALGEBRAIC[67] is i_Kr in component delayed_rectifier_K_currents (picoA). * ALGEBRAIC[31] is i_Ks in component delayed_rectifier_K_currents (picoA). * ALGEBRAIC[39] is i_B_Na in component background_currents (picoA). * ALGEBRAIC[68] is i_B_Ca in component background_currents (picoA). * ALGEBRAIC[42] is i_NaK in component sodium_potassium_pump (picoA). * ALGEBRAIC[43] is i_CaP in component sarcolemmal_calcium_pump_current (picoA). * ALGEBRAIC[44] is i_NaCa in component Na_Ca_ion_exchanger_current (picoA). * ALGEBRAIC[45] is i_KACh in component ACh_dependent_K_current (picoA). * ALGEBRAIC[69] is I in component membrane (pA_per_nF). * ALGEBRAIC[1] is i_Stim in component membrane (pA_per_nF). * CONSTANTS[4] is stim_offset in component membrane (second). * CONSTANTS[5] is stim_period in component membrane (second). * CONSTANTS[6] is stim_duration in component membrane (second). * CONSTANTS[7] is stim_amplitude in component membrane (pA_per_nF). * ALGEBRAIC[0] is past in component membrane (second). * ALGEBRAIC[3] is E_Na in component sodium_current (millivolt). * CONSTANTS[8] is P_Na in component sodium_current (nanolitre_per_second). * STATES[1] is Na_c in component cleft_space_ion_concentrations (millimolar). * STATES[2] is Na_i in component intracellular_ion_concentrations (millimolar). * STATES[3] is m in component sodium_current_m_gate (dimensionless). * STATES[4] is h1 in component sodium_current_h1_gate (dimensionless). * STATES[5] is h2 in component sodium_current_h2_gate (dimensionless). * ALGEBRAIC[5] is m_infinity in component sodium_current_m_gate (dimensionless). * ALGEBRAIC[4] is m_factor in component sodium_current_m_gate (dimensionless). * ALGEBRAIC[6] is tau_m in component sodium_current_m_gate (second). * ALGEBRAIC[7] is h_infinity in component sodium_current_h1_gate (dimensionless). * ALGEBRAIC[8] is h_factor in component sodium_current_h1_gate (dimensionless). * ALGEBRAIC[9] is tau_h1 in component sodium_current_h1_gate (second). * ALGEBRAIC[10] is tau_h2 in component sodium_current_h2_gate (second). * CONSTANTS[9] is g_Ca_L in component L_type_Ca_channel (nanoS). * CONSTANTS[10] is E_Ca_app in component L_type_Ca_channel (millivolt). * ALGEBRAIC[11] is f_Ca in component L_type_Ca_channel (dimensionless). * CONSTANTS[11] is k_Ca in component L_type_Ca_channel (millimolar). * STATES[6] is Ca_d in component intracellular_ion_concentrations (millimolar). * STATES[7] is d_L in component L_type_Ca_channel_d_L_gate (dimensionless). * STATES[8] is f_L1 in component L_type_Ca_channel_f_L1_gate (dimensionless). * STATES[9] is f_L2 in component L_type_Ca_channel_f_L2_gate (dimensionless). * ALGEBRAIC[12] is d_L_infinity in component L_type_Ca_channel_d_L_gate (dimensionless). * ALGEBRAIC[13] is d_L_factor in component L_type_Ca_channel_d_L_gate (dimensionless). * ALGEBRAIC[14] is tau_d_L in component L_type_Ca_channel_d_L_gate (second). * ALGEBRAIC[15] is f_L_infinity in component L_type_Ca_channel_f_L1_gate (dimensionless). * ALGEBRAIC[16] is f_L_factor in component L_type_Ca_channel_f_L1_gate (millivolt). * ALGEBRAIC[17] is tau_f_L1 in component L_type_Ca_channel_f_L1_gate (second). * ALGEBRAIC[18] is tau_f_L2 in component L_type_Ca_channel_f_L2_gate (second). * ALGEBRAIC[19] is E_K in component Ca_independent_transient_outward_K_current (millivolt). * CONSTANTS[12] is g_t in component Ca_independent_transient_outward_K_current (nanoS). * STATES[10] is K_c in component cleft_space_ion_concentrations (millimolar). * STATES[11] is K_i in component intracellular_ion_concentrations (millimolar). * STATES[12] is r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * STATES[13] is s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless). * ALGEBRAIC[21] is tau_r in component Ca_independent_transient_outward_K_current_r_gate (second). * ALGEBRAIC[20] is r_infinity in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * ALGEBRAIC[24] is tau_s in component Ca_independent_transient_outward_K_current_s_gate (second). * ALGEBRAIC[22] is s_infinity in component Ca_independent_transient_outward_K_current_s_gate (dimensionless). * ALGEBRAIC[23] is s_factor in component Ca_independent_transient_outward_K_current_s_gate (dimensionless). * CONSTANTS[13] is g_kur in component ultra_rapid_K_current (nanoS). * STATES[14] is a_ur in component ultra_rapid_K_current_aur_gate (dimensionless). * STATES[15] is i_ur in component ultra_rapid_K_current_iur_gate (dimensionless). * ALGEBRAIC[26] is a_ur_infinity in component ultra_rapid_K_current_aur_gate (dimensionless). * ALGEBRAIC[27] is tau_a_ur in component ultra_rapid_K_current_aur_gate (second). * ALGEBRAIC[28] is i_ur_infinity in component ultra_rapid_K_current_iur_gate (dimensionless). * ALGEBRAIC[29] is tau_i_ur in component ultra_rapid_K_current_iur_gate (second). * CONSTANTS[14] is g_K1 in component inward_rectifier (nanoS). * CONSTANTS[15] is g_Ks in component delayed_rectifier_K_currents (nanoS). * CONSTANTS[16] is g_Kr in component delayed_rectifier_K_currents (nanoS). * STATES[16] is n in component delayed_rectifier_K_currents_n_gate (dimensionless). * STATES[17] is pa in component delayed_rectifier_K_currents_pa_gate (dimensionless). * ALGEBRAIC[38] is pip in component delayed_rectifier_K_currents_pi_gate (dimensionless). * ALGEBRAIC[34] is tau_n in component delayed_rectifier_K_currents_n_gate (second). * ALGEBRAIC[32] is n_infinity in component delayed_rectifier_K_currents_n_gate (dimensionless). * ALGEBRAIC[33] is n_factor in component delayed_rectifier_K_currents_n_gate (dimensionless). * ALGEBRAIC[37] is tau_pa in component delayed_rectifier_K_currents_pa_gate (second). * ALGEBRAIC[36] is pa_factor in component delayed_rectifier_K_currents_pa_gate (dimensionless). * ALGEBRAIC[35] is p_a_infinity in component delayed_rectifier_K_currents_pa_gate (dimensionless). * CONSTANTS[17] is g_B_Na in component background_currents (nanoS). * CONSTANTS[18] is g_B_Ca in component background_currents (nanoS). * ALGEBRAIC[40] is E_Ca in component background_currents (millivolt). * STATES[18] is Ca_c in component cleft_space_ion_concentrations (millimolar). * STATES[19] is Ca_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[19] is K_NaK_K in component sodium_potassium_pump (millimolar). * CONSTANTS[20] is i_NaK_max in component sodium_potassium_pump (picoA). * CONSTANTS[21] is pow_K_NaK_Na_15 in component sodium_potassium_pump (millimolar15). * ALGEBRAIC[41] is pow_Na_i_15 in component sodium_potassium_pump (millimolar15). * CONSTANTS[22] is i_CaP_max in component sarcolemmal_calcium_pump_current (picoA). * CONSTANTS[23] is k_CaP in component sarcolemmal_calcium_pump_current (millimolar). * CONSTANTS[24] is K_NaCa in component Na_Ca_ion_exchanger_current (picoA_per_millimolar_4). * CONSTANTS[25] is d_NaCa in component Na_Ca_ion_exchanger_current (per_millimolar_4). * CONSTANTS[26] is gamma_Na in component Na_Ca_ion_exchanger_current (dimensionless). * CONSTANTS[27] is ACh in component ACh_dependent_K_current (millimolar). * CONSTANTS[28] is phi_Na_en in component intracellular_ion_concentrations (picoA). * CONSTANTS[29] is Vol_i in component intracellular_ion_concentrations (nanolitre). * CONSTANTS[30] is Vol_d in component intracellular_ion_concentrations (nanolitre). * ALGEBRAIC[46] is i_di in component intracellular_ion_concentrations (picoA). * CONSTANTS[31] is tau_di in component intracellular_ion_concentrations (second). * ALGEBRAIC[61] is i_up in component Ca_handling_by_the_SR (picoA). * ALGEBRAIC[60] is i_rel in component Ca_handling_by_the_SR (picoA). * ALGEBRAIC[51] is J_O in component intracellular_Ca_buffering (per_second). * STATES[20] is O_C in component intracellular_Ca_buffering (dimensionless). * STATES[21] is O_TC in component intracellular_Ca_buffering (dimensionless). * STATES[22] is O_TMgC in component intracellular_Ca_buffering (dimensionless). * STATES[23] is O_TMgMg in component intracellular_Ca_buffering (dimensionless). * STATES[24] is O in component intracellular_Ca_buffering (dimensionless). * ALGEBRAIC[47] is J_O_C in component intracellular_Ca_buffering (per_second). * ALGEBRAIC[48] is J_O_TC in component intracellular_Ca_buffering (per_second). * ALGEBRAIC[49] is J_O_TMgC in component intracellular_Ca_buffering (per_second). * ALGEBRAIC[50] is J_O_TMgMg in component intracellular_Ca_buffering (per_second). * CONSTANTS[32] is Mg_i in component intracellular_Ca_buffering (millimolar). * CONSTANTS[33] is Vol_c in component cleft_space_ion_concentrations (nanolitre). * CONSTANTS[34] is tau_Na in component cleft_space_ion_concentrations (second). * CONSTANTS[35] is tau_K in component cleft_space_ion_concentrations (second). * CONSTANTS[36] is tau_Ca in component cleft_space_ion_concentrations (second). * CONSTANTS[37] is Na_b in component cleft_space_ion_concentrations (millimolar). * CONSTANTS[38] is Ca_b in component cleft_space_ion_concentrations (millimolar). * CONSTANTS[39] is K_b in component cleft_space_ion_concentrations (millimolar). * ALGEBRAIC[62] is i_tr in component Ca_handling_by_the_SR (picoA). * CONSTANTS[40] is I_up_max in component Ca_handling_by_the_SR (picoA). * CONSTANTS[41] is k_cyca in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[42] is k_srca in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[43] is k_xcs in component Ca_handling_by_the_SR (dimensionless). * CONSTANTS[44] is alpha_rel in component Ca_handling_by_the_SR (picoA_per_millimolar). * STATES[25] is Ca_rel in component Ca_handling_by_the_SR (millimolar). * STATES[26] is Ca_up in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[45] is Vol_up in component Ca_handling_by_the_SR (nanolitre). * CONSTANTS[46] is Vol_rel in component Ca_handling_by_the_SR (nanolitre). * ALGEBRAIC[56] is r_act in component Ca_handling_by_the_SR (per_second). * ALGEBRAIC[57] is r_inact in component Ca_handling_by_the_SR (per_second). * CONSTANTS[47] is r_recov in component Ca_handling_by_the_SR (per_second). * ALGEBRAIC[52] is r_Ca_d_term in component Ca_handling_by_the_SR (dimensionless). * ALGEBRAIC[53] is r_Ca_i_term in component Ca_handling_by_the_SR (dimensionless). * ALGEBRAIC[54] is r_Ca_d_factor in component Ca_handling_by_the_SR (dimensionless). * ALGEBRAIC[55] is r_Ca_i_factor in component Ca_handling_by_the_SR (dimensionless). * ALGEBRAIC[58] is i_rel_f2 in component Ca_handling_by_the_SR (dimensionless). * ALGEBRAIC[59] is i_rel_factor in component Ca_handling_by_the_SR (dimensionless). * STATES[27] is O_Calse in component Ca_handling_by_the_SR (dimensionless). * ALGEBRAIC[63] is J_O_Calse in component Ca_handling_by_the_SR (per_second). * STATES[28] is F1 in component Ca_handling_by_the_SR (dimensionless). * STATES[29] is F2 in component Ca_handling_by_the_SR (dimensionless). * CONSTANTS[48] is tau_tr in component Ca_handling_by_the_SR (second). * CONSTANTS[49] is k_rel_i in component Ca_handling_by_the_SR (millimolar). * CONSTANTS[50] is k_rel_d in component Ca_handling_by_the_SR (millimolar). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[3] is d/dt m in component sodium_current_m_gate (dimensionless). * RATES[4] is d/dt h1 in component sodium_current_h1_gate (dimensionless). * RATES[5] is d/dt h2 in component sodium_current_h2_gate (dimensionless). * RATES[7] is d/dt d_L in component L_type_Ca_channel_d_L_gate (dimensionless). * RATES[8] is d/dt f_L1 in component L_type_Ca_channel_f_L1_gate (dimensionless). * RATES[9] is d/dt f_L2 in component L_type_Ca_channel_f_L2_gate (dimensionless). * RATES[12] is d/dt r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * RATES[13] is d/dt s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless). * RATES[14] is d/dt a_ur in component ultra_rapid_K_current_aur_gate (dimensionless). * RATES[15] is d/dt i_ur in component ultra_rapid_K_current_iur_gate (dimensionless). * RATES[16] is d/dt n in component delayed_rectifier_K_currents_n_gate (dimensionless). * RATES[17] is d/dt pa in component delayed_rectifier_K_currents_pa_gate (dimensionless). * RATES[11] is d/dt K_i in component intracellular_ion_concentrations (millimolar). * RATES[2] is d/dt Na_i in component intracellular_ion_concentrations (millimolar). * RATES[19] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar). * RATES[6] is d/dt Ca_d in component intracellular_ion_concentrations (millimolar). * RATES[20] is d/dt O_C in component intracellular_Ca_buffering (dimensionless). * RATES[21] is d/dt O_TC in component intracellular_Ca_buffering (dimensionless). * RATES[22] is d/dt O_TMgC in component intracellular_Ca_buffering (dimensionless). * RATES[23] is d/dt O_TMgMg in component intracellular_Ca_buffering (dimensionless). * RATES[24] is d/dt O in component intracellular_Ca_buffering (dimensionless). * RATES[18] is d/dt Ca_c in component cleft_space_ion_concentrations (millimolar). * RATES[10] is d/dt K_c in component cleft_space_ion_concentrations (millimolar). * RATES[1] is d/dt Na_c in component cleft_space_ion_concentrations (millimolar). * RATES[28] is d/dt F1 in component Ca_handling_by_the_SR (dimensionless). * RATES[29] is d/dt F2 in component Ca_handling_by_the_SR (dimensionless). * RATES[27] is d/dt O_Calse in component Ca_handling_by_the_SR (dimensionless). * RATES[26] is d/dt Ca_up in component Ca_handling_by_the_SR (millimolar). * RATES[25] is d/dt Ca_rel in component Ca_handling_by_the_SR (millimolar). * There are a total of 2 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -74.031982; CONSTANTS[0] = 8314; CONSTANTS[1] = 306.15; CONSTANTS[2] = 96487; CONSTANTS[3] = 50; CONSTANTS[4] = 0; CONSTANTS[5] = 1; CONSTANTS[6] = 0.006; CONSTANTS[7] = -15; CONSTANTS[8] = 0.0018; STATES[1] = 130.022096; STATES[2] = 8.516766; STATES[3] = 0.003289; STATES[4] = 0.877202; STATES[5] = 0.873881; CONSTANTS[9] = 6.75; CONSTANTS[10] = 60; CONSTANTS[11] = 0.025; STATES[6] = 7.1e-5; STATES[7] = 0.000014; STATES[8] = 0.998597; STATES[9] = 0.998586; CONSTANTS[12] = 8.25; STATES[10] = 5.560224; STATES[11] = 129.485991; STATES[12] = 0.001089; STATES[13] = 0.948597; CONSTANTS[13] = 2.25; STATES[14] = 0.000367; STATES[15] = 0.96729; CONSTANTS[14] = 3.1; CONSTANTS[15] = 1; CONSTANTS[16] = 0.5; STATES[16] = 0.004374; STATES[17] = 0.000053; CONSTANTS[17] = 0.060599; CONSTANTS[18] = 0.078681; STATES[18] = 1.815768; STATES[19] = 6.5e-5; CONSTANTS[19] = 1; CONSTANTS[20] = 68.55; CONSTANTS[21] = 36.4829; CONSTANTS[22] = 4; CONSTANTS[23] = 0.0002; CONSTANTS[24] = 0.0374842; CONSTANTS[25] = 0.0003; CONSTANTS[26] = 0.45; CONSTANTS[27] = 1e-24; CONSTANTS[28] = 0; CONSTANTS[29] = 0.005884; CONSTANTS[30] = 0.00011768; CONSTANTS[31] = 0.01; STATES[20] = 0.026766; STATES[21] = 0.012922; STATES[22] = 0.190369; STATES[23] = 0.714463; STATES[24] = 1.38222; CONSTANTS[32] = 2.5; CONSTANTS[33] = 0.000800224; CONSTANTS[34] = 14.3; CONSTANTS[35] = 10; CONSTANTS[36] = 24.7; CONSTANTS[37] = 130; CONSTANTS[38] = 1.8; CONSTANTS[39] = 5.4; CONSTANTS[40] = 2800; CONSTANTS[41] = 0.0003; CONSTANTS[42] = 0.5; CONSTANTS[43] = 0.4; CONSTANTS[44] = 200000; STATES[25] = 0.632613; STATES[26] = 0.649195; CONSTANTS[45] = 0.0003969; CONSTANTS[46] = 0.0000441; CONSTANTS[47] = 0.815; STATES[27] = 0.431547; STATES[28] = 0.470055; STATES[29] = 0.002814; CONSTANTS[48] = 0.01; CONSTANTS[49] = 0.0003; CONSTANTS[50] = 0.003; RATES[0] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; RATES[16] = 0.1001; RATES[17] = 0.1001; RATES[11] = 0.1001; RATES[2] = 0.1001; RATES[19] = 0.1001; RATES[6] = 0.1001; RATES[20] = 0.1001; RATES[21] = 0.1001; RATES[22] = 0.1001; RATES[23] = 0.1001; RATES[24] = 0.1001; RATES[18] = 0.1001; RATES[10] = 0.1001; RATES[1] = 0.1001; RATES[28] = 0.1001; RATES[29] = 0.1001; RATES[27] = 0.1001; RATES[26] = 0.1001; RATES[25] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - ALGEBRAIC[69]*1000.00; resid[1] = RATES[3] - (ALGEBRAIC[5] - STATES[3])/ALGEBRAIC[6]; resid[2] = RATES[4] - (ALGEBRAIC[7] - STATES[4])/ALGEBRAIC[9]; resid[3] = RATES[5] - (ALGEBRAIC[7] - STATES[5])/ALGEBRAIC[10]; resid[4] = RATES[7] - (ALGEBRAIC[12] - STATES[7])/ALGEBRAIC[14]; resid[5] = RATES[8] - (ALGEBRAIC[15] - STATES[8])/ALGEBRAIC[17]; resid[6] = RATES[9] - (ALGEBRAIC[15] - STATES[9])/ALGEBRAIC[18]; resid[7] = RATES[12] - (ALGEBRAIC[20] - STATES[12])/ALGEBRAIC[21]; resid[8] = RATES[13] - (ALGEBRAIC[22] - STATES[13])/ALGEBRAIC[24]; resid[9] = RATES[14] - (ALGEBRAIC[26] - STATES[14])/ALGEBRAIC[27]; resid[10] = RATES[15] - (ALGEBRAIC[28] - STATES[15])/ALGEBRAIC[29]; resid[11] = RATES[16] - (ALGEBRAIC[32] - STATES[16])/ALGEBRAIC[34]; resid[12] = RATES[17] - (ALGEBRAIC[35] - STATES[17])/ALGEBRAIC[37]; resid[13] = RATES[11] - - (((ALGEBRAIC[66]+ALGEBRAIC[25]+ALGEBRAIC[30]+ALGEBRAIC[31]+ALGEBRAIC[67]) - 2.00000*ALGEBRAIC[42])+ ALGEBRAIC[1]*CONSTANTS[3])/( CONSTANTS[29]*CONSTANTS[2]); resid[14] = RATES[2] - - (ALGEBRAIC[64]+ALGEBRAIC[39]+ 3.00000*ALGEBRAIC[44]+ 3.00000*ALGEBRAIC[42]+CONSTANTS[28])/( CONSTANTS[29]*CONSTANTS[2]); resid[15] = RATES[19] - - ((ALGEBRAIC[68]+ALGEBRAIC[43]+ALGEBRAIC[61]) - (ALGEBRAIC[46]+ALGEBRAIC[60]+ 2.00000*ALGEBRAIC[44]))/( 2.00000*CONSTANTS[29]*CONSTANTS[2]) - 1.00000*ALGEBRAIC[51]; resid[16] = RATES[6] - - (ALGEBRAIC[65]+ALGEBRAIC[46])/( 2.00000*CONSTANTS[30]*CONSTANTS[2]); resid[17] = RATES[20] - ALGEBRAIC[47]; resid[18] = RATES[21] - ALGEBRAIC[48]; resid[19] = RATES[22] - ALGEBRAIC[49]; resid[20] = RATES[23] - ALGEBRAIC[50]; resid[21] = RATES[24] - ALGEBRAIC[51]; resid[22] = RATES[18] - (CONSTANTS[38] - STATES[18])/CONSTANTS[36]+((ALGEBRAIC[65]+ALGEBRAIC[68]+ALGEBRAIC[43]) - 2.00000*ALGEBRAIC[44])/( 2.00000*CONSTANTS[33]*CONSTANTS[2]); resid[23] = RATES[10] - (CONSTANTS[39] - STATES[10])/CONSTANTS[35]+((ALGEBRAIC[66]+ALGEBRAIC[25]+ALGEBRAIC[30]+ALGEBRAIC[31]+ALGEBRAIC[67]) - 2.00000*ALGEBRAIC[42])/( CONSTANTS[33]*CONSTANTS[2]); resid[24] = RATES[1] - (CONSTANTS[37] - STATES[1])/CONSTANTS[34]+(ALGEBRAIC[64]+ALGEBRAIC[39]+ 3.00000*ALGEBRAIC[44]+ 3.00000*ALGEBRAIC[42]+CONSTANTS[28])/( CONSTANTS[33]*CONSTANTS[2]); resid[25] = RATES[28] - CONSTANTS[47]*((1.00000 - STATES[28]) - STATES[29]) - ALGEBRAIC[56]*STATES[28]; resid[26] = RATES[29] - ALGEBRAIC[56]*STATES[28] - ALGEBRAIC[57]*STATES[29]; resid[27] = RATES[27] - ALGEBRAIC[63]; resid[28] = RATES[26] - (ALGEBRAIC[61] - ALGEBRAIC[62])/( 2.00000*CONSTANTS[45]*CONSTANTS[2]); resid[29] = RATES[25] - (ALGEBRAIC[62] - ALGEBRAIC[60])/( 2.00000*CONSTANTS[46]*CONSTANTS[2]) - 31.0000*ALGEBRAIC[63]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[2] = 0.0500000*STATES[0]; } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = floor(VOI/CONSTANTS[5])*CONSTANTS[5]; ALGEBRAIC[1] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000 ? CONSTANTS[7] : 0.00000); ALGEBRAIC[5] = 1.00000/(1.00000+exp((STATES[0]+27.1200)/- 8.21000)); ALGEBRAIC[4] = (STATES[0]+25.5700)/28.8000; ALGEBRAIC[6] = 4.20000e-05*exp( - ALGEBRAIC[4]*ALGEBRAIC[4])+2.40000e-05; ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+63.6000)/5.30000)); ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+35.1000)/3.20000)); ALGEBRAIC[9] = 0.0300000*ALGEBRAIC[8]+0.000300000; ALGEBRAIC[10] = 0.120000*ALGEBRAIC[8]+0.00300000; ALGEBRAIC[12] = 1.00000/(1.00000+exp((STATES[0]+9.00000)/- 5.80000)); ALGEBRAIC[13] = (STATES[0]+35.0000)/30.0000; ALGEBRAIC[14] = 0.00270000*exp( - ALGEBRAIC[13]*ALGEBRAIC[13])+0.00200000; ALGEBRAIC[15] = 1.00000/(1.00000+exp((STATES[0]+27.4000)/7.10000)); ALGEBRAIC[16] = STATES[0]+40.0000; ALGEBRAIC[17] = 0.161000*exp((( - ALGEBRAIC[16]*ALGEBRAIC[16])/14.4000)/14.4000)+0.0100000; ALGEBRAIC[18] = 1.33230*exp((( - ALGEBRAIC[16]*ALGEBRAIC[16])/14.2000)/14.2000)+0.0626000; ALGEBRAIC[20] = 1.00000/(1.00000+exp((STATES[0] - 1.00000)/- 11.0000)); ALGEBRAIC[21] = 0.00350000*exp((( - STATES[0]*STATES[0])/30.0000)/30.0000)+0.00150000; ALGEBRAIC[22] = 1.00000/(1.00000+exp((STATES[0]+40.5000)/11.5000)); ALGEBRAIC[23] = (STATES[0]+52.4500)/15.8827; ALGEBRAIC[24] = 0.0256350*exp( - ALGEBRAIC[23]*ALGEBRAIC[23])+0.0141400; ALGEBRAIC[19] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[10]/STATES[11]); ALGEBRAIC[25] = CONSTANTS[13]*STATES[14]*STATES[15]*(STATES[0] - ALGEBRAIC[19]); ALGEBRAIC[26] = 1.00000/(1.00000+exp(- (STATES[0]+6.00000)/8.60000)); ALGEBRAIC[27] = 0.00900000/(1.00000+exp((STATES[0]+5.00000)/12.0000))+0.000500000; ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[0]+7.50000)/10.0000)); ALGEBRAIC[29] = 0.590000/(1.00000+exp((STATES[0]+60.0000)/10.0000))+3.05000; ALGEBRAIC[30] = ( CONSTANTS[14]*pow(STATES[10]/1.00000, 0.445700)*(STATES[0] - ALGEBRAIC[19]))/(1.00000+exp(( 1.50000*((STATES[0] - ALGEBRAIC[19])+3.60000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[31] = CONSTANTS[15]*STATES[16]*(STATES[0] - ALGEBRAIC[19]); ALGEBRAIC[32] = 1.00000/(1.00000+exp((STATES[0] - 19.9000)/- 12.7000)); ALGEBRAIC[33] = (STATES[0] - 20.0000)/20.0000; ALGEBRAIC[34] = 0.700000+ 0.400000*exp( - ALGEBRAIC[33]*ALGEBRAIC[33]); ALGEBRAIC[35] = 1.00000/(1.00000+exp((STATES[0]+15.0000)/- 6.00000)); ALGEBRAIC[36] = (STATES[0]+20.1376)/22.1996; ALGEBRAIC[37] = 0.0311800+ 0.217180*exp( - ALGEBRAIC[36]*ALGEBRAIC[36]); ALGEBRAIC[3] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[1]/STATES[2]); ALGEBRAIC[39] = CONSTANTS[17]*(STATES[0] - ALGEBRAIC[3]); ALGEBRAIC[41] = pow(STATES[2], 1.50000); ALGEBRAIC[42] = ( (( (( CONSTANTS[20]*STATES[10])/(STATES[10]+CONSTANTS[19]))*ALGEBRAIC[41])/(ALGEBRAIC[41]+CONSTANTS[21]))*(STATES[0]+150.000))/(STATES[0]+200.000); ALGEBRAIC[43] = ( CONSTANTS[22]*STATES[19])/(STATES[19]+CONSTANTS[23]); ALGEBRAIC[44] = ( CONSTANTS[24]*( STATES[2]*STATES[2]*STATES[2]*STATES[18]*exp(( CONSTANTS[2]*STATES[0]*CONSTANTS[26])/( CONSTANTS[0]*CONSTANTS[1])) - STATES[1]*STATES[1]*STATES[1]*STATES[19]*exp(( (CONSTANTS[26] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/(1.00000+ CONSTANTS[25]*( STATES[1]*STATES[1]*STATES[1]*STATES[19]+ STATES[2]*STATES[2]*STATES[2]*STATES[18])); ALGEBRAIC[46] = ( (STATES[6] - STATES[19])*2.00000*CONSTANTS[30]*CONSTANTS[2])/CONSTANTS[31]; ALGEBRAIC[47] = 200000.*STATES[19]*(1.00000 - STATES[20]) - 476.000*STATES[20]; ALGEBRAIC[48] = 78400.0*STATES[19]*(1.00000 - STATES[21]) - 392.000*STATES[21]; ALGEBRAIC[49] = 200000.*STATES[19]*((1.00000 - STATES[22]) - STATES[23]) - 6.60000*STATES[22]; ALGEBRAIC[50] = 2000.00*CONSTANTS[32]*((1.00000 - STATES[22]) - STATES[23]) - 666.000*STATES[23]; ALGEBRAIC[51] = 0.0800000*ALGEBRAIC[48]+ 0.160000*ALGEBRAIC[49]+ 0.0450000*ALGEBRAIC[47]; ALGEBRAIC[52] = STATES[6]/(STATES[6]+CONSTANTS[50]); ALGEBRAIC[54] = ALGEBRAIC[52]*ALGEBRAIC[52]*ALGEBRAIC[52]*ALGEBRAIC[52]; ALGEBRAIC[53] = STATES[19]/(STATES[19]+CONSTANTS[49]); ALGEBRAIC[55] = ALGEBRAIC[53]*ALGEBRAIC[53]*ALGEBRAIC[53]*ALGEBRAIC[53]; ALGEBRAIC[56] = 203.800*(ALGEBRAIC[55]+ALGEBRAIC[54]); ALGEBRAIC[57] = 33.9600+ 339.600*ALGEBRAIC[55]; ALGEBRAIC[58] = STATES[29]/(STATES[29]+0.250000); ALGEBRAIC[59] = ALGEBRAIC[58]*ALGEBRAIC[58]; ALGEBRAIC[60] = CONSTANTS[44]*ALGEBRAIC[59]*(STATES[25] - STATES[19]); ALGEBRAIC[61] = ( CONSTANTS[40]*(STATES[19]/CONSTANTS[41] - ( CONSTANTS[43]*CONSTANTS[43]*STATES[26])/CONSTANTS[42]))/((STATES[19]+CONSTANTS[41])/CONSTANTS[41]+( CONSTANTS[43]*(STATES[26]+CONSTANTS[42]))/CONSTANTS[42]); ALGEBRAIC[62] = ( (STATES[26] - STATES[25])*2.00000*CONSTANTS[46]*CONSTANTS[2])/CONSTANTS[48]; ALGEBRAIC[63] = 480.000*STATES[25]*(1.00000 - STATES[27]) - 400.000*STATES[27]; ALGEBRAIC[64] = ( (( CONSTANTS[8]*STATES[3]*STATES[3]*STATES[3]*( 0.900000*STATES[4]+ 0.100000*STATES[5])*STATES[1]*STATES[0]*CONSTANTS[2]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*(exp(( (STATES[0] - ALGEBRAIC[3])*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000))/(exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[11] = STATES[6]/(STATES[6]+CONSTANTS[11]); ALGEBRAIC[65] = CONSTANTS[9]*STATES[7]*( ALGEBRAIC[11]*STATES[8]+ (1.00000 - ALGEBRAIC[11])*STATES[9])*(STATES[0] - CONSTANTS[10]); ALGEBRAIC[66] = CONSTANTS[12]*STATES[12]*STATES[13]*(STATES[0] - ALGEBRAIC[19]); ALGEBRAIC[38] = 1.00000/(1.00000+exp((STATES[0]+55.0000)/24.0000)); ALGEBRAIC[67] = CONSTANTS[16]*STATES[17]*ALGEBRAIC[38]*(STATES[0] - ALGEBRAIC[19]); ALGEBRAIC[40] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(STATES[18]/STATES[19]); ALGEBRAIC[68] = CONSTANTS[18]*(STATES[0] - ALGEBRAIC[40]); ALGEBRAIC[45] = (10.0000/(1.00000+( 9.13652*pow(1.00000, 0.477811))/pow(CONSTANTS[27], 0.477811)))*(0.0517000+0.451600/(1.00000+exp((STATES[0]+59.5300)/17.1800)))*(STATES[0] - ALGEBRAIC[19])*CONSTANTS[3]; ALGEBRAIC[69] = (ALGEBRAIC[64]+ALGEBRAIC[65]+ALGEBRAIC[66]+ALGEBRAIC[25]+ALGEBRAIC[30]+ALGEBRAIC[67]+ALGEBRAIC[31]+ALGEBRAIC[39]+ALGEBRAIC[68]+ALGEBRAIC[42]+ALGEBRAIC[43]+ALGEBRAIC[44]+ALGEBRAIC[45])/CONSTANTS[3]+ALGEBRAIC[1]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; SI[21] = 1.0; SI[22] = 1.0; SI[23] = 1.0; SI[24] = 1.0; SI[25] = 1.0; SI[26] = 1.0; SI[27] = 1.0; SI[28] = 1.0; SI[29] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = (VOI - ALGEBRAIC[0]) - CONSTANTS[4]; CONDVAR[1] = (VOI - ALGEBRAIC[0]) - (CONSTANTS[4]+CONSTANTS[6]); }