# Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays: sizeAlgebraic = 1 sizeStates = 2 sizeConstants = 9 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (hour)" legend_states[0] = "M in component M (nanomolar)" legend_algebraic[0] = "q in component M (dimensionless)" legend_constants[0] = "vm in component M (flux)" legend_constants[1] = "km in component M (first_order_rate_constant)" legend_constants[2] = "Pcrit in component M (nanomolar)" legend_constants[3] = "Keq in component M (per_nanomolar)" legend_states[1] = "Pt in component Pt (nanomolar)" legend_constants[4] = "vp in component Pt (first_order_rate_constant)" legend_constants[5] = "kp1 in component Pt (flux)" legend_constants[6] = "kp3 in component Pt (first_order_rate_constant)" legend_constants[7] = "kp2 in component Pt (flux)" legend_constants[8] = "Jp in component Pt (nanomolar)" legend_rates[0] = "d/dt M in component M (nanomolar)" legend_rates[1] = "d/dt Pt in component Pt (nanomolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.0 constants[0] = 1.0 constants[1] = 0.1 constants[2] = 0.1 constants[3] = 200.0 states[1] = 0.0 constants[4] = 0.5 constants[5] = 10.0 constants[6] = 0.1 constants[7] = 0.03 constants[8] = 0.05 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = 2.00000/(1.00000+power(1.00000+8.00000*constants[3]*states[1], 1.0/2)) rates[0] = constants[0]/(1.00000+power((states[1]*(1.00000-algebraic[0]))/(2.00000*constants[2]), 2.00000))-constants[1]*states[0] rates[1] = constants[4]*states[0]-((constants[5]*states[1]*algebraic[0]+constants[7]*states[1])/(constants[8]+states[1])+constants[6]*states[1]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = 2.00000/(1.00000+power(1.00000+8.00000*constants[3]*states[1], 1.0/2)) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)