/* There are a total of 45 entries in the algebraic variable array. There are a total of 17 entries in each of the rate and state variable arrays. There are a total of 59 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (microF). * ALGEBRAIC[5] is i_K1 in component time_independent_potassium_current (nanoA). * ALGEBRAIC[31] is i_to in component transient_outward_current (nanoA). * ALGEBRAIC[7] is i_K in component time_dependent_potassium_current (nanoA). * ALGEBRAIC[21] is i_Ca_L_K in component L_type_Ca_channel (nanoA). * ALGEBRAIC[12] is i_b_K in component potassium_background_current (nanoA). * ALGEBRAIC[34] is i_NaK in component sodium_potassium_pump (nanoA). * ALGEBRAIC[13] is i_Na in component fast_sodium_current (nanoA). * ALGEBRAIC[19] is i_b_Na in component sodium_background_current (nanoA). * ALGEBRAIC[22] is i_Ca_L_Na in component L_type_Ca_channel (nanoA). * ALGEBRAIC[35] is i_NaCa in component sodium_calcium_exchanger (nanoA). * ALGEBRAIC[20] is i_Ca_L_Ca in component L_type_Ca_channel (nanoA). * ALGEBRAIC[30] is i_b_Ca in component calcium_background_current (nanoA). * ALGEBRAIC[0] is i_Stim in component membrane (nanoA). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (second). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (nanoA). * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt). * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt). * ALGEBRAIC[3] is E_Ca in component reversal_potentials (millivolt). * ALGEBRAIC[4] is E_mh in component reversal_potentials (millivolt). * CONSTANTS[9] is K_o in component extracellular_potassium_concentration (millimolar). * CONSTANTS[10] is Na_o in component extracellular_sodium_concentration (millimolar). * STATES[1] is K_i in component intracellular_potassium_concentration (millimolar). * STATES[2] is Na_i in component intracellular_sodium_concentration (millimolar). * CONSTANTS[11] is Ca_o in component extracellular_calcium_concentration (millimolar). * STATES[3] is Ca_i in component intracellular_calcium_concentration (millimolar). * CONSTANTS[12] is K_mk1 in component time_independent_potassium_current (millimolar). * CONSTANTS[13] is g_K1 in component time_independent_potassium_current (microS). * ALGEBRAIC[6] is I_K in component time_dependent_potassium_current (nanoA). * CONSTANTS[14] is i_K_max in component time_dependent_potassium_current (nanoA). * STATES[4] is x in component time_dependent_potassium_current_x_gate (dimensionless). * ALGEBRAIC[8] is E0xa in component time_dependent_potassium_current_x_gate (millivolt). * ALGEBRAIC[10] is E0xb in component time_dependent_potassium_current_x_gate (millivolt). * ALGEBRAIC[9] is alpha_x in component time_dependent_potassium_current_x_gate (per_second). * ALGEBRAIC[11] is beta_x in component time_dependent_potassium_current_x_gate (per_second). * CONSTANTS[15] is g_bk in component potassium_background_current (microS). * CONSTANTS[16] is g_Na in component fast_sodium_current (microS). * STATES[5] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[6] is h in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[15] is alpha_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[16] is beta_m in component fast_sodium_current_m_gate (per_second). * CONSTANTS[17] is delta_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[14] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[17] is alpha_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[18] is beta_h in component fast_sodium_current_h_gate (per_second). * CONSTANTS[18] is shift_h in component fast_sodium_current_h_gate (millivolt). * CONSTANTS[19] is g_bna in component sodium_background_current (microS). * ALGEBRAIC[23] is i_Ca_L in component L_type_Ca_channel (nanoA). * CONSTANTS[20] is P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar). * CONSTANTS[21] is P_CaK in component L_type_Ca_channel (dimensionless). * CONSTANTS[22] is P_CaNa in component L_type_Ca_channel (dimensionless). * STATES[7] is d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[8] is f in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[25] is alpha_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[26] is beta_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[24] is E0_d in component L_type_Ca_channel_d_gate (millivolt). * CONSTANTS[23] is speed_d in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[28] is alpha_f in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[29] is beta_f in component L_type_Ca_channel_f_gate (per_second). * CONSTANTS[24] is speed_f in component L_type_Ca_channel_f_gate (dimensionless). * CONSTANTS[25] is delta_f in component L_type_Ca_channel_f_gate (millivolt). * ALGEBRAIC[27] is E0_f in component L_type_Ca_channel_f_gate (millivolt). * CONSTANTS[26] is g_bca in component calcium_background_current (microS). * CONSTANTS[27] is g_to in component transient_outward_current (microS). * CONSTANTS[28] is g_tos in component transient_outward_current (dimensionless). * STATES[9] is s in component transient_outward_current_s_gate (dimensionless). * STATES[10] is r in component transient_outward_current_r_gate (dimensionless). * ALGEBRAIC[32] is alpha_s in component transient_outward_current_s_gate (per_second). * ALGEBRAIC[33] is beta_s in component transient_outward_current_s_gate (per_second). * CONSTANTS[29] is i_NaK_max in component sodium_potassium_pump (nanoA). * CONSTANTS[30] is K_mK in component sodium_potassium_pump (millimolar). * CONSTANTS[31] is K_mNa in component sodium_potassium_pump (millimolar). * CONSTANTS[32] is k_NaCa in component sodium_calcium_exchanger (nanoA). * CONSTANTS[33] is n_NaCa in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[34] is d_NaCa in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[35] is gamma in component sodium_calcium_exchanger (dimensionless). * ALGEBRAIC[37] is i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * CONSTANTS[56] is K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless). * ALGEBRAIC[36] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[36] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[37] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless). * CONSTANTS[38] is K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[39] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * CONSTANTS[40] is beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * STATES[11] is Ca_up in component intracellular_calcium_concentration (millimolar). * ALGEBRAIC[38] is i_trans in component calcium_translocation (millimolar_per_second). * STATES[12] is Ca_rel in component intracellular_calcium_concentration (millimolar). * ALGEBRAIC[44] is i_rel in component calcium_release (millimolar_per_second). * ALGEBRAIC[39] is VoltDep in component calcium_release (dimensionless). * ALGEBRAIC[40] is RegBindSite in component calcium_release (dimensionless). * ALGEBRAIC[41] is ActRate in component calcium_release (per_second). * ALGEBRAIC[42] is InactRate in component calcium_release (per_second). * CONSTANTS[41] is K_leak_rate in component calcium_release (per_second). * CONSTANTS[42] is K_m_Ca in component calcium_release (millimolar). * CONSTANTS[43] is K_m_rel in component calcium_release (per_second). * ALGEBRAIC[43] is PrecFrac in component calcium_release (dimensionless). * STATES[13] is ActFrac in component calcium_release (dimensionless). * STATES[14] is ProdFrac in component calcium_release (dimensionless). * CONSTANTS[58] is V_i in component intracellular_calcium_concentration (micrometre3). * STATES[15] is Ca_Calmod in component intracellular_calcium_concentration (millimolar). * STATES[16] is Ca_Trop in component intracellular_calcium_concentration (millimolar). * CONSTANTS[44] is Calmod in component intracellular_calcium_concentration (millimolar). * CONSTANTS[45] is Trop in component intracellular_calcium_concentration (millimolar). * CONSTANTS[46] is alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second). * CONSTANTS[47] is beta_Calmod in component intracellular_calcium_concentration (per_second). * CONSTANTS[48] is alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second). * CONSTANTS[49] is beta_Trop in component intracellular_calcium_concentration (per_second). * CONSTANTS[50] is radius in component intracellular_calcium_concentration (micrometre). * CONSTANTS[51] is length in component intracellular_calcium_concentration (micrometre). * CONSTANTS[55] is V_Cell in component intracellular_calcium_concentration (micrometre3). * CONSTANTS[57] is V_i_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[52] is V_rel_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[53] is V_e_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[54] is V_up_ratio in component intracellular_calcium_concentration (dimensionless). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[4] is d/dt x in component time_dependent_potassium_current_x_gate (dimensionless). * RATES[5] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[6] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[7] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[8] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless). * RATES[9] is d/dt s in component transient_outward_current_s_gate (dimensionless). * RATES[10] is d/dt r in component transient_outward_current_r_gate (dimensionless). * RATES[13] is d/dt ActFrac in component calcium_release (dimensionless). * RATES[14] is d/dt ProdFrac in component calcium_release (dimensionless). * RATES[2] is d/dt Na_i in component intracellular_sodium_concentration (millimolar). * RATES[1] is d/dt K_i in component intracellular_potassium_concentration (millimolar). * RATES[3] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar). * RATES[15] is d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar). * RATES[16] is d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar). * RATES[11] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar). * RATES[12] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar). * There are a total of 7 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -93.7400119196694; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 310; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 9.5e-5; CONSTANTS[4] = 0.1; CONSTANTS[5] = 100; CONSTANTS[6] = 1; CONSTANTS[7] = 0.002; CONSTANTS[8] = -6; CONSTANTS[9] = 4; CONSTANTS[10] = 140; STATES[1] = 136.604284305878; STATES[2] = 7.50547214142684; CONSTANTS[11] = 2; STATES[3] = 1.34858164771406e-5; CONSTANTS[12] = 10; CONSTANTS[13] = 1; CONSTANTS[14] = 1; STATES[4] = 0.00938586574433011; CONSTANTS[15] = 0.0006; CONSTANTS[16] = 2.5; STATES[5] = 0.00143405969732302; STATES[6] = 0.995414125415674; CONSTANTS[17] = 1e-5; CONSTANTS[18] = 0; CONSTANTS[19] = 0.0006; CONSTANTS[20] = 0.25; CONSTANTS[21] = 0.002; CONSTANTS[22] = 0.01; STATES[7] = 1.91821833548952e-8; STATES[8] = 0.999999956287155; CONSTANTS[23] = 3; CONSTANTS[24] = 0.5; CONSTANTS[25] = 0.0001; CONSTANTS[26] = 0.00025; CONSTANTS[27] = 0.005; CONSTANTS[28] = 0; STATES[9] = 0.997644968939185; STATES[10] = 1.60424507876553e-8; CONSTANTS[29] = 0.7; CONSTANTS[30] = 1; CONSTANTS[31] = 40; CONSTANTS[32] = 0.0005; CONSTANTS[33] = 3; CONSTANTS[34] = 0; CONSTANTS[35] = 0.5; CONSTANTS[36] = 0.0003; CONSTANTS[37] = 0.4; CONSTANTS[38] = 0.5; CONSTANTS[39] = 0.4; CONSTANTS[40] = 0.03; STATES[11] = 0.59333810408885; STATES[12] = 0.591323137897127; CONSTANTS[41] = 0; CONSTANTS[42] = 0.0005; CONSTANTS[43] = 250; STATES[13] = 0.00267040300939318; STATES[14] = 0.522949441962453; STATES[15] = 0.000524570960945961; STATES[16] = 0.00033477224086766; CONSTANTS[44] = 0.02; CONSTANTS[45] = 0.05; CONSTANTS[46] = 100000; CONSTANTS[47] = 50; CONSTANTS[48] = 100000; CONSTANTS[49] = 200; CONSTANTS[50] = 0.012; CONSTANTS[51] = 0.074; CONSTANTS[52] = 0.1; CONSTANTS[53] = 0.4; CONSTANTS[54] = 0.01; CONSTANTS[55] = 3.14159*pow(CONSTANTS[50], 2.00000)*CONSTANTS[51]; CONSTANTS[56] = ( CONSTANTS[36]*CONSTANTS[37])/CONSTANTS[38]; CONSTANTS[57] = ((1.00000 - CONSTANTS[53]) - CONSTANTS[54]) - CONSTANTS[52]; CONSTANTS[58] = CONSTANTS[55]*CONSTANTS[57]; RATES[0] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[2] = 0.1001; RATES[1] = 0.1001; RATES[3] = 0.1001; RATES[15] = 0.1001; RATES[16] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[5]+ALGEBRAIC[31]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[34]+ALGEBRAIC[13]+ALGEBRAIC[19]+ALGEBRAIC[22]+ALGEBRAIC[35]+ALGEBRAIC[20]+ALGEBRAIC[21]+ALGEBRAIC[30]); resid[1] = RATES[4] - ALGEBRAIC[9]*(1.00000 - STATES[4]) - ALGEBRAIC[11]*STATES[4]; resid[2] = RATES[5] - ALGEBRAIC[15]*(1.00000 - STATES[5]) - ALGEBRAIC[16]*STATES[5]; resid[3] = RATES[6] - ALGEBRAIC[17]*(1.00000 - STATES[6]) - ALGEBRAIC[18]*STATES[6]; resid[4] = RATES[7] - CONSTANTS[23]*( ALGEBRAIC[25]*(1.00000 - STATES[7]) - ALGEBRAIC[26]*STATES[7]); resid[5] = RATES[8] - CONSTANTS[24]*( ALGEBRAIC[28]*(1.00000 - STATES[8]) - ALGEBRAIC[29]*STATES[8]); resid[6] = RATES[9] - ALGEBRAIC[32]*(1.00000 - STATES[9]) - ALGEBRAIC[33]*STATES[9]; resid[7] = RATES[10] - 333.000*(1.00000/(1.00000+exp(- (STATES[0]+4.00000)/5.00000)) - STATES[10]); resid[8] = RATES[13] - ALGEBRAIC[43]*ALGEBRAIC[41] - STATES[13]*ALGEBRAIC[42]; resid[9] = RATES[14] - STATES[13]*ALGEBRAIC[42] - 1.00000*STATES[14]; resid[10] = RATES[2] - (- 1.00000/( 1.00000*CONSTANTS[58]*CONSTANTS[2]))*(ALGEBRAIC[13]+ALGEBRAIC[19]+ 3.00000*ALGEBRAIC[34]+ 3.00000*ALGEBRAIC[35]+ALGEBRAIC[22]); resid[11] = RATES[1] - (- 1.00000/( 1.00000*CONSTANTS[58]*CONSTANTS[2]))*((ALGEBRAIC[5]+ALGEBRAIC[7]+ALGEBRAIC[21]+ALGEBRAIC[31]+ALGEBRAIC[12]) - 2.00000*ALGEBRAIC[34]); resid[12] = RATES[3] - ((( (- 1.00000/( 2.00000*1.00000*CONSTANTS[58]*CONSTANTS[2]))*((ALGEBRAIC[20]+ALGEBRAIC[30]) - 2.00000*ALGEBRAIC[35])+( ALGEBRAIC[44]*CONSTANTS[52])/CONSTANTS[57]) - RATES[15]) - RATES[16]) - ALGEBRAIC[37]; resid[13] = RATES[11] - (CONSTANTS[57]/CONSTANTS[54])*ALGEBRAIC[37] - ALGEBRAIC[38]; resid[14] = RATES[12] - (CONSTANTS[54]/CONSTANTS[52])*ALGEBRAIC[38] - ALGEBRAIC[44]; resid[15] = RATES[15] - CONSTANTS[46]*STATES[3]*(CONSTANTS[44] - STATES[15]) - CONSTANTS[47]*STATES[15]; resid[16] = RATES[16] - CONSTANTS[48]*STATES[3]*(CONSTANTS[45] - STATES[16]) - CONSTANTS[49]*STATES[16]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[23] = ALGEBRAIC[20]+ALGEBRAIC[21]+ALGEBRAIC[22]; ALGEBRAIC[39] = exp( 0.0800000*(STATES[0] - 40.0000)); } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[2] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[9]/STATES[1]); ALGEBRAIC[5] = ( (( CONSTANTS[13]*CONSTANTS[9])/(CONSTANTS[9]+CONSTANTS[12]))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( ((STATES[0] - ALGEBRAIC[2]) - 10.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[6] = ( CONSTANTS[14]*(STATES[1] - CONSTANTS[9]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/140.000; ALGEBRAIC[7] = STATES[4]*ALGEBRAIC[6]; ALGEBRAIC[8] = STATES[0]+50.0000; ALGEBRAIC[9] = ( 0.500000*exp( 0.0826000*ALGEBRAIC[8]))/(1.00000+exp( 0.0570000*ALGEBRAIC[8])); ALGEBRAIC[10] = STATES[0]+20.0000; ALGEBRAIC[11] = ( 1.30000*exp( - 0.0600000*ALGEBRAIC[10]))/(1.00000+exp( - 0.0400000*ALGEBRAIC[10])); ALGEBRAIC[12] = CONSTANTS[15]*(STATES[0] - ALGEBRAIC[2]); ALGEBRAIC[4] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[10]+ 0.120000*CONSTANTS[9])/(STATES[2]+ 0.120000*STATES[1])); ALGEBRAIC[13] = CONSTANTS[16]*pow(STATES[5], 3.00000)*STATES[6]*(STATES[0] - ALGEBRAIC[4]); ALGEBRAIC[14] = STATES[0]+41.0000; ALGEBRAIC[15] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[14])/(1.00000 - exp( - 0.100000*ALGEBRAIC[14]))); ALGEBRAIC[16] = 8000.00*exp( - 0.0560000*(STATES[0]+66.0000)); ALGEBRAIC[17] = 20.0000*exp( - 0.125000*((STATES[0]+75.0000) - CONSTANTS[18])); ALGEBRAIC[18] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*((STATES[0]+75.0000) - CONSTANTS[18]))); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[2]); ALGEBRAIC[19] = CONSTANTS[19]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[20] = ((( 4.00000*CONSTANTS[20]*STATES[7]*STATES[8]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[21] = ((( CONSTANTS[21]*CONSTANTS[20]*STATES[7]*STATES[8]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[9]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[22] = ((( CONSTANTS[22]*CONSTANTS[20]*STATES[7]*STATES[8]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[24] = (STATES[0]+24.0000) - 5.00000; ALGEBRAIC[25] = (CONDVAR[4]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[24])/(1.00000 - exp(- ALGEBRAIC[24]/4.00000))); ALGEBRAIC[26] = (CONDVAR[5]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[24])/(exp(ALGEBRAIC[24]/10.0000) - 1.00000)); ALGEBRAIC[27] = STATES[0]+34.0000; ALGEBRAIC[28] = (CONDVAR[6]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[27])/(exp(ALGEBRAIC[27]/4.00000) - 1.00000)); ALGEBRAIC[29] = 50.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000)); ALGEBRAIC[3] = (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[11]/STATES[3]); ALGEBRAIC[30] = CONSTANTS[26]*(STATES[0] - ALGEBRAIC[3]); ALGEBRAIC[31] = CONSTANTS[27]*(CONSTANTS[28]+ STATES[9]*(1.00000 - CONSTANTS[28]))*STATES[10]*(STATES[0] - ALGEBRAIC[2]); ALGEBRAIC[32] = 0.0330000*exp(- STATES[0]/17.0000); ALGEBRAIC[33] = 33.0000/(1.00000+exp( - 0.125000*(STATES[0]+10.0000))); ALGEBRAIC[34] = ( (( CONSTANTS[29]*CONSTANTS[9])/(CONSTANTS[30]+CONSTANTS[9]))*STATES[2])/(CONSTANTS[31]+STATES[2]); ALGEBRAIC[35] = ( CONSTANTS[32]*( exp(( CONSTANTS[35]*(CONSTANTS[33] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[33])*CONSTANTS[11] - exp(( (CONSTANTS[35] - 1.00000)*(CONSTANTS[33] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[10], CONSTANTS[33])*STATES[3]))/( (1.00000+ CONSTANTS[34]*( STATES[3]*pow(CONSTANTS[10], CONSTANTS[33])+ CONSTANTS[11]*pow(STATES[2], CONSTANTS[33])))*(1.00000+STATES[3]/0.00690000)); ALGEBRAIC[36] = STATES[3]+ STATES[11]*CONSTANTS[56]+ CONSTANTS[36]*CONSTANTS[37]+CONSTANTS[36]; ALGEBRAIC[37] = (STATES[3]/ALGEBRAIC[36])*CONSTANTS[39] - (( STATES[11]*CONSTANTS[56])/ALGEBRAIC[36])*CONSTANTS[40]; ALGEBRAIC[38] = 50.0000*(STATES[11] - STATES[12]); ALGEBRAIC[40] = pow(STATES[3]/(STATES[3]+CONSTANTS[42]), 2.00000); ALGEBRAIC[41] = 500.000*ALGEBRAIC[40]; ALGEBRAIC[42] = 60.0000+ 500.000*ALGEBRAIC[40]; ALGEBRAIC[43] = (1.00000 - STATES[13]) - STATES[14]; ALGEBRAIC[44] = ( pow(STATES[13]/(STATES[13]+0.250000), 2.00000)*CONSTANTS[43]+CONSTANTS[41])*STATES[12]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; CONDVAR[3] = fabs(ALGEBRAIC[14]) - CONSTANTS[17]; CONDVAR[4] = fabs(ALGEBRAIC[24]) - 0.000100000; CONDVAR[5] = fabs(ALGEBRAIC[24]) - 0.000100000; CONDVAR[6] = fabs(ALGEBRAIC[27]) - CONSTANTS[25]; }