function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =45; end % There are a total of 17 entries in each of the rate and state variable arrays. % There are a total of 59 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('V in component membrane (millivolt)'); LEGEND_CONSTANTS(:,1) = strpad('R in component membrane (joule_per_kilomole_kelvin)'); LEGEND_CONSTANTS(:,2) = strpad('T in component membrane (kelvin)'); LEGEND_CONSTANTS(:,3) = strpad('F in component membrane (coulomb_per_mole)'); LEGEND_CONSTANTS(:,4) = strpad('Cm in component membrane (microF)'); LEGEND_ALGEBRAIC(:,28) = strpad('i_K1 in component time_independent_potassium_current (nanoA)'); LEGEND_ALGEBRAIC(:,39) = strpad('i_to in component transient_outward_current (nanoA)'); LEGEND_ALGEBRAIC(:,30) = strpad('i_K in component time_dependent_potassium_current (nanoA)'); LEGEND_ALGEBRAIC(:,35) = strpad('i_Ca_L_K in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,31) = strpad('i_b_K in component potassium_background_current (nanoA)'); LEGEND_ALGEBRAIC(:,40) = strpad('i_NaK in component sodium_potassium_pump (nanoA)'); LEGEND_ALGEBRAIC(:,32) = strpad('i_Na in component fast_sodium_current (nanoA)'); LEGEND_ALGEBRAIC(:,33) = strpad('i_b_Na in component sodium_background_current (nanoA)'); LEGEND_ALGEBRAIC(:,36) = strpad('i_Ca_L_Na in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,41) = strpad('i_NaCa in component sodium_calcium_exchanger (nanoA)'); LEGEND_ALGEBRAIC(:,34) = strpad('i_Ca_L_Ca in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,38) = strpad('i_b_Ca in component calcium_background_current (nanoA)'); LEGEND_ALGEBRAIC(:,7) = strpad('i_Stim in component membrane (nanoA)'); LEGEND_CONSTANTS(:,5) = strpad('stim_start in component membrane (second)'); LEGEND_CONSTANTS(:,6) = strpad('stim_end in component membrane (second)'); LEGEND_CONSTANTS(:,7) = strpad('stim_period in component membrane (second)'); LEGEND_CONSTANTS(:,8) = strpad('stim_duration in component membrane (second)'); LEGEND_CONSTANTS(:,9) = strpad('stim_amplitude in component membrane (nanoA)'); LEGEND_ALGEBRAIC(:,16) = strpad('E_Na in component reversal_potentials (millivolt)'); LEGEND_ALGEBRAIC(:,22) = strpad('E_K in component reversal_potentials (millivolt)'); LEGEND_ALGEBRAIC(:,25) = strpad('E_Ca in component reversal_potentials (millivolt)'); LEGEND_ALGEBRAIC(:,27) = strpad('E_mh in component reversal_potentials (millivolt)'); LEGEND_CONSTANTS(:,10) = strpad('K_o in component extracellular_potassium_concentration (millimolar)'); LEGEND_CONSTANTS(:,11) = strpad('Na_o in component extracellular_sodium_concentration (millimolar)'); LEGEND_STATES(:,2) = strpad('K_i in component intracellular_potassium_concentration (millimolar)'); LEGEND_STATES(:,3) = strpad('Na_i in component intracellular_sodium_concentration (millimolar)'); LEGEND_CONSTANTS(:,12) = strpad('Ca_o in component extracellular_calcium_concentration (millimolar)'); LEGEND_STATES(:,4) = strpad('Ca_i in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,13) = strpad('K_mk1 in component time_independent_potassium_current (millimolar)'); LEGEND_CONSTANTS(:,14) = strpad('g_K1 in component time_independent_potassium_current (microS)'); LEGEND_ALGEBRAIC(:,29) = strpad('I_K in component time_dependent_potassium_current (nanoA)'); LEGEND_CONSTANTS(:,15) = strpad('i_K_max in component time_dependent_potassium_current (nanoA)'); LEGEND_STATES(:,5) = strpad('x in component time_dependent_potassium_current_x_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,1) = strpad('E0xa in component time_dependent_potassium_current_x_gate (millivolt)'); LEGEND_ALGEBRAIC(:,18) = strpad('E0xb in component time_dependent_potassium_current_x_gate (millivolt)'); LEGEND_ALGEBRAIC(:,10) = strpad('alpha_x in component time_dependent_potassium_current_x_gate (per_second)'); LEGEND_ALGEBRAIC(:,24) = strpad('beta_x in component time_dependent_potassium_current_x_gate (per_second)'); LEGEND_CONSTANTS(:,16) = strpad('g_bk in component potassium_background_current (microS)'); LEGEND_CONSTANTS(:,17) = strpad('g_Na in component fast_sodium_current (microS)'); LEGEND_STATES(:,6) = strpad('m in component fast_sodium_current_m_gate (dimensionless)'); LEGEND_STATES(:,7) = strpad('h in component fast_sodium_current_h_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,11) = strpad('alpha_m in component fast_sodium_current_m_gate (per_second)'); LEGEND_ALGEBRAIC(:,19) = strpad('beta_m in component fast_sodium_current_m_gate (per_second)'); LEGEND_CONSTANTS(:,18) = strpad('delta_m in component fast_sodium_current_m_gate (millivolt)'); LEGEND_ALGEBRAIC(:,2) = strpad('E0_m in component fast_sodium_current_m_gate (millivolt)'); LEGEND_ALGEBRAIC(:,3) = strpad('alpha_h in component fast_sodium_current_h_gate (per_second)'); LEGEND_ALGEBRAIC(:,12) = strpad('beta_h in component fast_sodium_current_h_gate (per_second)'); LEGEND_CONSTANTS(:,19) = strpad('shift_h in component fast_sodium_current_h_gate (millivolt)'); LEGEND_CONSTANTS(:,20) = strpad('g_bna in component sodium_background_current (microS)'); LEGEND_ALGEBRAIC(:,37) = strpad('i_Ca_L in component L_type_Ca_channel (nanoA)'); LEGEND_CONSTANTS(:,21) = strpad('P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar)'); LEGEND_CONSTANTS(:,22) = strpad('P_CaK in component L_type_Ca_channel (dimensionless)'); LEGEND_CONSTANTS(:,23) = strpad('P_CaNa in component L_type_Ca_channel (dimensionless)'); LEGEND_STATES(:,8) = strpad('d in component L_type_Ca_channel_d_gate (dimensionless)'); LEGEND_STATES(:,9) = strpad('f in component L_type_Ca_channel_f_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,13) = strpad('alpha_d in component L_type_Ca_channel_d_gate (per_second)'); LEGEND_ALGEBRAIC(:,20) = strpad('beta_d in component L_type_Ca_channel_d_gate (per_second)'); LEGEND_ALGEBRAIC(:,4) = strpad('E0_d in component L_type_Ca_channel_d_gate (millivolt)'); LEGEND_CONSTANTS(:,24) = strpad('speed_d in component L_type_Ca_channel_d_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,14) = strpad('alpha_f in component L_type_Ca_channel_f_gate (per_second)'); LEGEND_ALGEBRAIC(:,21) = strpad('beta_f in component L_type_Ca_channel_f_gate (per_second)'); LEGEND_CONSTANTS(:,25) = strpad('speed_f in component L_type_Ca_channel_f_gate (dimensionless)'); LEGEND_CONSTANTS(:,26) = strpad('delta_f in component L_type_Ca_channel_f_gate (millivolt)'); LEGEND_ALGEBRAIC(:,5) = strpad('E0_f in component L_type_Ca_channel_f_gate (millivolt)'); LEGEND_CONSTANTS(:,27) = strpad('g_bca in component calcium_background_current (microS)'); LEGEND_CONSTANTS(:,28) = strpad('g_to in component transient_outward_current (microS)'); LEGEND_CONSTANTS(:,29) = strpad('g_tos in component transient_outward_current (dimensionless)'); LEGEND_STATES(:,10) = strpad('s in component transient_outward_current_s_gate (dimensionless)'); LEGEND_STATES(:,11) = strpad('r in component transient_outward_current_r_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,6) = strpad('alpha_s in component transient_outward_current_s_gate (per_second)'); LEGEND_ALGEBRAIC(:,15) = strpad('beta_s in component transient_outward_current_s_gate (per_second)'); LEGEND_CONSTANTS(:,30) = strpad('i_NaK_max in component sodium_potassium_pump (nanoA)'); LEGEND_CONSTANTS(:,31) = strpad('K_mK in component sodium_potassium_pump (millimolar)'); LEGEND_CONSTANTS(:,32) = strpad('K_mNa in component sodium_potassium_pump (millimolar)'); LEGEND_CONSTANTS(:,33) = strpad('k_NaCa in component sodium_calcium_exchanger (nanoA)'); LEGEND_CONSTANTS(:,34) = strpad('n_NaCa in component sodium_calcium_exchanger (dimensionless)'); LEGEND_CONSTANTS(:,35) = strpad('d_NaCa in component sodium_calcium_exchanger (dimensionless)'); LEGEND_CONSTANTS(:,36) = strpad('gamma in component sodium_calcium_exchanger (dimensionless)'); LEGEND_ALGEBRAIC(:,43) = strpad('i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)'); LEGEND_CONSTANTS(:,57) = strpad('K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless)'); LEGEND_ALGEBRAIC(:,42) = strpad('K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar)'); LEGEND_CONSTANTS(:,37) = strpad('K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar)'); LEGEND_CONSTANTS(:,38) = strpad('K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless)'); LEGEND_CONSTANTS(:,39) = strpad('K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar)'); LEGEND_CONSTANTS(:,40) = strpad('alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)'); LEGEND_CONSTANTS(:,41) = strpad('beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)'); LEGEND_STATES(:,12) = strpad('Ca_up in component intracellular_calcium_concentration (millimolar)'); LEGEND_ALGEBRAIC(:,44) = strpad('i_trans in component calcium_translocation (millimolar_per_second)'); LEGEND_STATES(:,13) = strpad('Ca_rel in component intracellular_calcium_concentration (millimolar)'); LEGEND_ALGEBRAIC(:,45) = strpad('i_rel in component calcium_release (millimolar_per_second)'); LEGEND_ALGEBRAIC(:,8) = strpad('VoltDep in component calcium_release (dimensionless)'); LEGEND_ALGEBRAIC(:,9) = strpad('RegBindSite in component calcium_release (dimensionless)'); LEGEND_ALGEBRAIC(:,17) = strpad('ActRate in component calcium_release (per_second)'); LEGEND_ALGEBRAIC(:,23) = strpad('InactRate in component calcium_release (per_second)'); LEGEND_CONSTANTS(:,42) = strpad('K_leak_rate in component calcium_release (per_second)'); LEGEND_CONSTANTS(:,43) = strpad('K_m_Ca in component calcium_release (millimolar)'); LEGEND_CONSTANTS(:,44) = strpad('K_m_rel in component calcium_release (per_second)'); LEGEND_ALGEBRAIC(:,26) = strpad('PrecFrac in component calcium_release (dimensionless)'); LEGEND_STATES(:,14) = strpad('ActFrac in component calcium_release (dimensionless)'); LEGEND_STATES(:,15) = strpad('ProdFrac in component calcium_release (dimensionless)'); LEGEND_CONSTANTS(:,59) = strpad('V_i in component intracellular_calcium_concentration (micrometre3)'); LEGEND_STATES(:,16) = strpad('Ca_Calmod in component intracellular_calcium_concentration (millimolar)'); LEGEND_STATES(:,17) = strpad('Ca_Trop in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,45) = strpad('Calmod in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,46) = strpad('Trop in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,47) = strpad('alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second)'); LEGEND_CONSTANTS(:,48) = strpad('beta_Calmod in component intracellular_calcium_concentration (per_second)'); LEGEND_CONSTANTS(:,49) = strpad('alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second)'); LEGEND_CONSTANTS(:,50) = strpad('beta_Trop in component intracellular_calcium_concentration (per_second)'); LEGEND_CONSTANTS(:,51) = strpad('radius in component intracellular_calcium_concentration (micrometre)'); LEGEND_CONSTANTS(:,52) = strpad('length in component intracellular_calcium_concentration (micrometre)'); LEGEND_CONSTANTS(:,56) = strpad('V_Cell in component intracellular_calcium_concentration (micrometre3)'); LEGEND_CONSTANTS(:,58) = strpad('V_i_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,53) = strpad('V_rel_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,54) = strpad('V_e_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,55) = strpad('V_up_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_RATES(:,1) = strpad('d/dt V in component membrane (millivolt)'); LEGEND_RATES(:,5) = strpad('d/dt x in component time_dependent_potassium_current_x_gate (dimensionless)'); LEGEND_RATES(:,6) = strpad('d/dt m in component fast_sodium_current_m_gate (dimensionless)'); LEGEND_RATES(:,7) = strpad('d/dt h in component fast_sodium_current_h_gate (dimensionless)'); LEGEND_RATES(:,8) = strpad('d/dt d in component L_type_Ca_channel_d_gate (dimensionless)'); LEGEND_RATES(:,9) = strpad('d/dt f in component L_type_Ca_channel_f_gate (dimensionless)'); LEGEND_RATES(:,10) = strpad('d/dt s in component transient_outward_current_s_gate (dimensionless)'); LEGEND_RATES(:,11) = strpad('d/dt r in component transient_outward_current_r_gate (dimensionless)'); LEGEND_RATES(:,14) = strpad('d/dt ActFrac in component calcium_release (dimensionless)'); LEGEND_RATES(:,15) = strpad('d/dt ProdFrac in component calcium_release (dimensionless)'); LEGEND_RATES(:,3) = strpad('d/dt Na_i in component intracellular_sodium_concentration (millimolar)'); LEGEND_RATES(:,2) = strpad('d/dt K_i in component intracellular_potassium_concentration (millimolar)'); LEGEND_RATES(:,4) = strpad('d/dt Ca_i in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,16) = strpad('d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,17) = strpad('d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,12) = strpad('d/dt Ca_up in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,13) = strpad('d/dt Ca_rel in component intracellular_calcium_concentration (millimolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = -93.7400119196694; CONSTANTS(:,1) = 8314.472; CONSTANTS(:,2) = 310; CONSTANTS(:,3) = 96485.3415; CONSTANTS(:,4) = 9.5e-5; CONSTANTS(:,5) = 0.1; CONSTANTS(:,6) = 100; CONSTANTS(:,7) = 1; CONSTANTS(:,8) = 0.002; CONSTANTS(:,9) = -6; CONSTANTS(:,10) = 4; CONSTANTS(:,11) = 140; STATES(:,2) = 136.604284305878; STATES(:,3) = 7.50547214142684; CONSTANTS(:,12) = 2; STATES(:,4) = 1.34858164771406e-5; CONSTANTS(:,13) = 10; CONSTANTS(:,14) = 1; CONSTANTS(:,15) = 1; STATES(:,5) = 0.00938586574433011; CONSTANTS(:,16) = 0.0006; CONSTANTS(:,17) = 2.5; STATES(:,6) = 0.00143405969732302; STATES(:,7) = 0.995414125415674; CONSTANTS(:,18) = 1e-5; CONSTANTS(:,19) = 0; CONSTANTS(:,20) = 0.0006; CONSTANTS(:,21) = 0.25; CONSTANTS(:,22) = 0.002; CONSTANTS(:,23) = 0.01; STATES(:,8) = 1.91821833548952e-8; STATES(:,9) = 0.999999956287155; CONSTANTS(:,24) = 3; CONSTANTS(:,25) = 0.5; CONSTANTS(:,26) = 0.0001; CONSTANTS(:,27) = 0.00025; CONSTANTS(:,28) = 0.005; CONSTANTS(:,29) = 0; STATES(:,10) = 0.997644968939185; STATES(:,11) = 1.60424507876553e-8; CONSTANTS(:,30) = 0.7; CONSTANTS(:,31) = 1; CONSTANTS(:,32) = 40; CONSTANTS(:,33) = 0.0005; CONSTANTS(:,34) = 3; CONSTANTS(:,35) = 0; CONSTANTS(:,36) = 0.5; CONSTANTS(:,37) = 0.0003; CONSTANTS(:,38) = 0.4; CONSTANTS(:,39) = 0.5; CONSTANTS(:,40) = 0.4; CONSTANTS(:,41) = 0.03; STATES(:,12) = 0.59333810408885; STATES(:,13) = 0.591323137897127; CONSTANTS(:,42) = 0; CONSTANTS(:,43) = 0.0005; CONSTANTS(:,44) = 250; STATES(:,14) = 0.00267040300939318; STATES(:,15) = 0.522949441962453; STATES(:,16) = 0.000524570960945961; STATES(:,17) = 0.00033477224086766; CONSTANTS(:,45) = 0.02; CONSTANTS(:,46) = 0.05; CONSTANTS(:,47) = 100000; CONSTANTS(:,48) = 50; CONSTANTS(:,49) = 100000; CONSTANTS(:,50) = 200; CONSTANTS(:,51) = 0.012; CONSTANTS(:,52) = 0.074; CONSTANTS(:,53) = 0.1; CONSTANTS(:,54) = 0.4; CONSTANTS(:,55) = 0.01; CONSTANTS(:,56) = 3.14159.*power(CONSTANTS(:,51), 2.00000).*CONSTANTS(:,52); CONSTANTS(:,57) = ( CONSTANTS(:,37).*CONSTANTS(:,38))./CONSTANTS(:,39); CONSTANTS(:,58) = ((1.00000 - CONSTANTS(:,54)) - CONSTANTS(:,55)) - CONSTANTS(:,53); CONSTANTS(:,59) = CONSTANTS(:,56).*CONSTANTS(:,58); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,11) = 333.000.*(1.00000./(1.00000+exp( - (STATES(:,1)+4.00000)./5.00000)) - STATES(:,11)); ALGEBRAIC(:,3) = 20.0000.*exp( - 0.125000.*((STATES(:,1)+75.0000) - CONSTANTS(:,19))); ALGEBRAIC(:,12) = 2000.00./(1.00000+ 320.000.*exp( - 0.100000.*((STATES(:,1)+75.0000) - CONSTANTS(:,19)))); RATES(:,7) = ALGEBRAIC(:,3).*(1.00000 - STATES(:,7)) - ALGEBRAIC(:,12).*STATES(:,7); ALGEBRAIC(:,6) = 0.0330000.*exp( - STATES(:,1)./17.0000); ALGEBRAIC(:,15) = 33.0000./(1.00000+exp( - 0.125000.*(STATES(:,1)+10.0000))); RATES(:,10) = ALGEBRAIC(:,6).*(1.00000 - STATES(:,10)) - ALGEBRAIC(:,15).*STATES(:,10); ALGEBRAIC(:,2) = STATES(:,1)+41.0000; ALGEBRAIC(:,11) = piecewise({abs(ALGEBRAIC(:,2))=CONSTANTS(:,5)&VOI<=CONSTANTS(:,6)&(VOI - CONSTANTS(:,5)) - floor((VOI - CONSTANTS(:,5))./CONSTANTS(:,7)).*CONSTANTS(:,7)<=CONSTANTS(:,8), CONSTANTS(:,9) }, 0.00000); RATES(:,1) = ( - 1.00000./CONSTANTS(:,4)).*(ALGEBRAIC(:,7)+ALGEBRAIC(:,28)+ALGEBRAIC(:,39)+ALGEBRAIC(:,30)+ALGEBRAIC(:,31)+ALGEBRAIC(:,40)+ALGEBRAIC(:,32)+ALGEBRAIC(:,33)+ALGEBRAIC(:,36)+ALGEBRAIC(:,41)+ALGEBRAIC(:,34)+ALGEBRAIC(:,35)+ALGEBRAIC(:,38)); RATES(:,3) = ( - 1.00000./( 1.00000.*CONSTANTS(:,59).*CONSTANTS(:,3))).*(ALGEBRAIC(:,32)+ALGEBRAIC(:,33)+ 3.00000.*ALGEBRAIC(:,40)+ 3.00000.*ALGEBRAIC(:,41)+ALGEBRAIC(:,36)); ALGEBRAIC(:,42) = STATES(:,4)+ STATES(:,12).*CONSTANTS(:,57)+ CONSTANTS(:,37).*CONSTANTS(:,38)+CONSTANTS(:,37); ALGEBRAIC(:,43) = (STATES(:,4)./ALGEBRAIC(:,42)).*CONSTANTS(:,40) - (( STATES(:,12).*CONSTANTS(:,57))./ALGEBRAIC(:,42)).*CONSTANTS(:,41); ALGEBRAIC(:,44) = 50.0000.*(STATES(:,12) - STATES(:,13)); RATES(:,12) = (CONSTANTS(:,58)./CONSTANTS(:,55)).*ALGEBRAIC(:,43) - ALGEBRAIC(:,44); RATES(:,16) = CONSTANTS(:,47).*STATES(:,4).*(CONSTANTS(:,45) - STATES(:,16)) - CONSTANTS(:,48).*STATES(:,16); ALGEBRAIC(:,45) = ( power(STATES(:,14)./(STATES(:,14)+0.250000), 2.00000).*CONSTANTS(:,44)+CONSTANTS(:,42)).*STATES(:,13); RATES(:,13) = (CONSTANTS(:,55)./CONSTANTS(:,53)).*ALGEBRAIC(:,44) - ALGEBRAIC(:,45); RATES(:,17) = CONSTANTS(:,49).*STATES(:,4).*(CONSTANTS(:,46) - STATES(:,17)) - CONSTANTS(:,50).*STATES(:,17); RATES(:,4) = ((( ( - 1.00000./( 2.00000.*1.00000.*CONSTANTS(:,59).*CONSTANTS(:,3))).*((ALGEBRAIC(:,34)+ALGEBRAIC(:,38)) - 2.00000.*ALGEBRAIC(:,41))+( ALGEBRAIC(:,45).*CONSTANTS(:,53))./CONSTANTS(:,58)) - RATES(:,16)) - RATES(:,17)) - ALGEBRAIC(:,43); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,3) = 20.0000.*exp( - 0.125000.*((STATES(:,1)+75.0000) - CONSTANTS(:,19))); ALGEBRAIC(:,12) = 2000.00./(1.00000+ 320.000.*exp( - 0.100000.*((STATES(:,1)+75.0000) - CONSTANTS(:,19)))); ALGEBRAIC(:,6) = 0.0330000.*exp( - STATES(:,1)./17.0000); ALGEBRAIC(:,15) = 33.0000./(1.00000+exp( - 0.125000.*(STATES(:,1)+10.0000))); ALGEBRAIC(:,2) = STATES(:,1)+41.0000; ALGEBRAIC(:,11) = piecewise({abs(ALGEBRAIC(:,2))=CONSTANTS(:,5)&VOI<=CONSTANTS(:,6)&(VOI - CONSTANTS(:,5)) - floor((VOI - CONSTANTS(:,5))./CONSTANTS(:,7)).*CONSTANTS(:,7)<=CONSTANTS(:,8), CONSTANTS(:,9) }, 0.00000); ALGEBRAIC(:,42) = STATES(:,4)+ STATES(:,12).*CONSTANTS(:,57)+ CONSTANTS(:,37).*CONSTANTS(:,38)+CONSTANTS(:,37); ALGEBRAIC(:,43) = (STATES(:,4)./ALGEBRAIC(:,42)).*CONSTANTS(:,40) - (( STATES(:,12).*CONSTANTS(:,57))./ALGEBRAIC(:,42)).*CONSTANTS(:,41); ALGEBRAIC(:,44) = 50.0000.*(STATES(:,12) - STATES(:,13)); ALGEBRAIC(:,45) = ( power(STATES(:,14)./(STATES(:,14)+0.250000), 2.00000).*CONSTANTS(:,44)+CONSTANTS(:,42)).*STATES(:,13); ALGEBRAIC(:,8) = exp( 0.0800000.*(STATES(:,1) - 40.0000)); ALGEBRAIC(:,37) = ALGEBRAIC(:,34)+ALGEBRAIC(:,35)+ALGEBRAIC(:,36); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end