# Size of variable arrays: sizeAlgebraic = 45 sizeStates = 17 sizeConstants = 59 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "R in component membrane (joule_per_kilomole_kelvin)" legend_constants[1] = "T in component membrane (kelvin)" legend_constants[2] = "F in component membrane (coulomb_per_mole)" legend_constants[3] = "Cm in component membrane (microF)" legend_algebraic[27] = "i_K1 in component time_independent_potassium_current (nanoA)" legend_algebraic[38] = "i_to in component transient_outward_current (nanoA)" legend_algebraic[29] = "i_K in component time_dependent_potassium_current (nanoA)" legend_algebraic[34] = "i_Ca_L_K in component L_type_Ca_channel (nanoA)" legend_algebraic[30] = "i_b_K in component potassium_background_current (nanoA)" legend_algebraic[39] = "i_NaK in component sodium_potassium_pump (nanoA)" legend_algebraic[31] = "i_Na in component fast_sodium_current (nanoA)" legend_algebraic[32] = "i_b_Na in component sodium_background_current (nanoA)" legend_algebraic[35] = "i_Ca_L_Na in component L_type_Ca_channel (nanoA)" legend_algebraic[40] = "i_NaCa in component sodium_calcium_exchanger (nanoA)" legend_algebraic[33] = "i_Ca_L_Ca in component L_type_Ca_channel (nanoA)" legend_algebraic[37] = "i_b_Ca in component calcium_background_current (nanoA)" legend_algebraic[6] = "i_Stim in component membrane (nanoA)" legend_constants[4] = "stim_start in component membrane (second)" legend_constants[5] = "stim_end in component membrane (second)" legend_constants[6] = "stim_period in component membrane (second)" legend_constants[7] = "stim_duration in component membrane (second)" legend_constants[8] = "stim_amplitude in component membrane (nanoA)" legend_algebraic[15] = "E_Na in component reversal_potentials (millivolt)" legend_algebraic[21] = "E_K in component reversal_potentials (millivolt)" legend_algebraic[24] = "E_Ca in component reversal_potentials (millivolt)" legend_algebraic[26] = "E_mh in component reversal_potentials (millivolt)" legend_constants[9] = "K_o in component extracellular_potassium_concentration (millimolar)" legend_constants[10] = "Na_o in component extracellular_sodium_concentration (millimolar)" legend_states[1] = "K_i in component intracellular_potassium_concentration (millimolar)" legend_states[2] = "Na_i in component intracellular_sodium_concentration (millimolar)" legend_constants[11] = "Ca_o in component extracellular_calcium_concentration (millimolar)" legend_states[3] = "Ca_i in component intracellular_calcium_concentration (millimolar)" legend_constants[12] = "K_mk1 in component time_independent_potassium_current (millimolar)" legend_constants[13] = "g_K1 in component time_independent_potassium_current (microS)" legend_algebraic[28] = "I_K in component time_dependent_potassium_current (nanoA)" legend_constants[14] = "i_K_max in component time_dependent_potassium_current (nanoA)" legend_states[4] = "x in component time_dependent_potassium_current_x_gate (dimensionless)" legend_algebraic[0] = "E0xa in component time_dependent_potassium_current_x_gate (millivolt)" legend_algebraic[17] = "E0xb in component time_dependent_potassium_current_x_gate (millivolt)" legend_algebraic[9] = "alpha_x in component time_dependent_potassium_current_x_gate (per_second)" legend_algebraic[23] = "beta_x in component time_dependent_potassium_current_x_gate (per_second)" legend_constants[15] = "g_bk in component potassium_background_current (microS)" legend_constants[16] = "g_Na in component fast_sodium_current (microS)" legend_states[5] = "m in component fast_sodium_current_m_gate (dimensionless)" legend_states[6] = "h in component fast_sodium_current_h_gate (dimensionless)" legend_algebraic[10] = "alpha_m in component fast_sodium_current_m_gate (per_second)" legend_algebraic[18] = "beta_m in component fast_sodium_current_m_gate (per_second)" legend_constants[17] = "delta_m in component fast_sodium_current_m_gate (millivolt)" legend_algebraic[1] = "E0_m in component fast_sodium_current_m_gate (millivolt)" legend_algebraic[2] = "alpha_h in component fast_sodium_current_h_gate (per_second)" legend_algebraic[11] = "beta_h in component fast_sodium_current_h_gate (per_second)" legend_constants[18] = "shift_h in component fast_sodium_current_h_gate (millivolt)" legend_constants[19] = "g_bna in component sodium_background_current (microS)" legend_algebraic[36] = "i_Ca_L in component L_type_Ca_channel (nanoA)" legend_constants[20] = "P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar)" legend_constants[21] = "P_CaK in component L_type_Ca_channel (dimensionless)" legend_constants[22] = "P_CaNa in component L_type_Ca_channel (dimensionless)" legend_states[7] = "d in component L_type_Ca_channel_d_gate (dimensionless)" legend_states[8] = "f in component L_type_Ca_channel_f_gate (dimensionless)" legend_algebraic[12] = "alpha_d in component L_type_Ca_channel_d_gate (per_second)" legend_algebraic[19] = "beta_d in component L_type_Ca_channel_d_gate (per_second)" legend_algebraic[3] = "E0_d in component L_type_Ca_channel_d_gate (millivolt)" legend_constants[23] = "speed_d in component L_type_Ca_channel_d_gate (dimensionless)" legend_algebraic[13] = "alpha_f in component L_type_Ca_channel_f_gate (per_second)" legend_algebraic[20] = "beta_f in component L_type_Ca_channel_f_gate (per_second)" legend_constants[24] = "speed_f in component L_type_Ca_channel_f_gate (dimensionless)" legend_constants[25] = "delta_f in component L_type_Ca_channel_f_gate (millivolt)" legend_algebraic[4] = "E0_f in component L_type_Ca_channel_f_gate (millivolt)" legend_constants[26] = "g_bca in component calcium_background_current (microS)" legend_constants[27] = "g_to in component transient_outward_current (microS)" legend_constants[28] = "g_tos in component transient_outward_current (dimensionless)" legend_states[9] = "s in component transient_outward_current_s_gate (dimensionless)" legend_states[10] = "r in component transient_outward_current_r_gate (dimensionless)" legend_algebraic[5] = "alpha_s in component transient_outward_current_s_gate (per_second)" legend_algebraic[14] = "beta_s in component transient_outward_current_s_gate (per_second)" legend_constants[29] = "i_NaK_max in component sodium_potassium_pump (nanoA)" legend_constants[30] = "K_mK in component sodium_potassium_pump (millimolar)" legend_constants[31] = "K_mNa in component sodium_potassium_pump (millimolar)" legend_constants[32] = "k_NaCa in component sodium_calcium_exchanger (nanoA)" legend_constants[33] = "n_NaCa in component sodium_calcium_exchanger (dimensionless)" legend_constants[34] = "d_NaCa in component sodium_calcium_exchanger (dimensionless)" legend_constants[35] = "gamma in component sodium_calcium_exchanger (dimensionless)" legend_algebraic[42] = "i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_constants[56] = "K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless)" legend_algebraic[41] = "K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[36] = "K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[37] = "K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless)" legend_constants[38] = "K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[39] = "alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_constants[40] = "beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_states[11] = "Ca_up in component intracellular_calcium_concentration (millimolar)" legend_algebraic[43] = "i_trans in component calcium_translocation (millimolar_per_second)" legend_states[12] = "Ca_rel in component intracellular_calcium_concentration (millimolar)" legend_algebraic[44] = "i_rel in component calcium_release (millimolar_per_second)" legend_algebraic[7] = "VoltDep in component calcium_release (dimensionless)" legend_algebraic[8] = "RegBindSite in component calcium_release (dimensionless)" legend_algebraic[16] = "ActRate in component calcium_release (per_second)" legend_algebraic[22] = "InactRate in component calcium_release (per_second)" legend_constants[41] = "K_leak_rate in component calcium_release (per_second)" legend_constants[42] = "K_m_Ca in component calcium_release (millimolar)" legend_constants[43] = "K_m_rel in component calcium_release (per_second)" legend_algebraic[25] = "PrecFrac in component calcium_release (dimensionless)" legend_states[13] = "ActFrac in component calcium_release (dimensionless)" legend_states[14] = "ProdFrac in component calcium_release (dimensionless)" legend_constants[58] = "V_i in component intracellular_calcium_concentration (micrometre3)" legend_states[15] = "Ca_Calmod in component intracellular_calcium_concentration (millimolar)" legend_states[16] = "Ca_Trop in component intracellular_calcium_concentration (millimolar)" legend_constants[44] = "Calmod in component intracellular_calcium_concentration (millimolar)" legend_constants[45] = "Trop in component intracellular_calcium_concentration (millimolar)" legend_constants[46] = "alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second)" legend_constants[47] = "beta_Calmod in component intracellular_calcium_concentration (per_second)" legend_constants[48] = "alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second)" legend_constants[49] = "beta_Trop in component intracellular_calcium_concentration (per_second)" legend_constants[50] = "radius in component intracellular_calcium_concentration (micrometre)" legend_constants[51] = "length in component intracellular_calcium_concentration (micrometre)" legend_constants[55] = "V_Cell in component intracellular_calcium_concentration (micrometre3)" legend_constants[57] = "V_i_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[52] = "V_rel_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[53] = "V_e_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[54] = "V_up_ratio in component intracellular_calcium_concentration (dimensionless)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[4] = "d/dt x in component time_dependent_potassium_current_x_gate (dimensionless)" legend_rates[5] = "d/dt m in component fast_sodium_current_m_gate (dimensionless)" legend_rates[6] = "d/dt h in component fast_sodium_current_h_gate (dimensionless)" legend_rates[7] = "d/dt d in component L_type_Ca_channel_d_gate (dimensionless)" legend_rates[8] = "d/dt f in component L_type_Ca_channel_f_gate (dimensionless)" legend_rates[9] = "d/dt s in component transient_outward_current_s_gate (dimensionless)" legend_rates[10] = "d/dt r in component transient_outward_current_r_gate (dimensionless)" legend_rates[13] = "d/dt ActFrac in component calcium_release (dimensionless)" legend_rates[14] = "d/dt ProdFrac in component calcium_release (dimensionless)" legend_rates[2] = "d/dt Na_i in component intracellular_sodium_concentration (millimolar)" legend_rates[1] = "d/dt K_i in component intracellular_potassium_concentration (millimolar)" legend_rates[3] = "d/dt Ca_i in component intracellular_calcium_concentration (millimolar)" legend_rates[15] = "d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar)" legend_rates[16] = "d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar)" legend_rates[11] = "d/dt Ca_up in component intracellular_calcium_concentration (millimolar)" legend_rates[12] = "d/dt Ca_rel in component intracellular_calcium_concentration (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -93.7400119196694 constants[0] = 8314.472 constants[1] = 310 constants[2] = 96485.3415 constants[3] = 9.5e-5 constants[4] = 0.1 constants[5] = 100 constants[6] = 1 constants[7] = 0.002 constants[8] = -6 constants[9] = 4 constants[10] = 140 states[1] = 136.604284305878 states[2] = 7.50547214142684 constants[11] = 2 states[3] = 1.34858164771406e-5 constants[12] = 10 constants[13] = 1 constants[14] = 1 states[4] = 0.00938586574433011 constants[15] = 0.0006 constants[16] = 2.5 states[5] = 0.00143405969732302 states[6] = 0.995414125415674 constants[17] = 1e-5 constants[18] = 0 constants[19] = 0.0006 constants[20] = 0.25 constants[21] = 0.002 constants[22] = 0.01 states[7] = 1.91821833548952e-8 states[8] = 0.999999956287155 constants[23] = 3 constants[24] = 0.5 constants[25] = 0.0001 constants[26] = 0.00025 constants[27] = 0.005 constants[28] = 0 states[9] = 0.997644968939185 states[10] = 1.60424507876553e-8 constants[29] = 0.7 constants[30] = 1 constants[31] = 40 constants[32] = 0.0005 constants[33] = 3 constants[34] = 0 constants[35] = 0.5 constants[36] = 0.0003 constants[37] = 0.4 constants[38] = 0.5 constants[39] = 0.4 constants[40] = 0.03 states[11] = 0.59333810408885 states[12] = 0.591323137897127 constants[41] = 0 constants[42] = 0.0005 constants[43] = 250 states[13] = 0.00267040300939318 states[14] = 0.522949441962453 states[15] = 0.000524570960945961 states[16] = 0.00033477224086766 constants[44] = 0.02 constants[45] = 0.05 constants[46] = 100000 constants[47] = 50 constants[48] = 100000 constants[49] = 200 constants[50] = 0.012 constants[51] = 0.074 constants[52] = 0.1 constants[53] = 0.4 constants[54] = 0.01 constants[55] = 3.14159*(power(constants[50], 2.00000))*constants[51] constants[56] = (constants[36]*constants[37])/constants[38] constants[57] = ((1.00000-constants[53])-constants[54])-constants[52] constants[58] = constants[55]*constants[57] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[10] = 333.000*(1.00000/(1.00000+exp(-(states[0]+4.00000)/5.00000))-states[10]) algebraic[2] = 20.0000*exp(-0.125000*((states[0]+75.0000)-constants[18])) algebraic[11] = 2000.00/(1.00000+320.000*exp(-0.100000*((states[0]+75.0000)-constants[18]))) rates[6] = algebraic[2]*(1.00000-states[6])-algebraic[11]*states[6] algebraic[5] = 0.0330000*exp(-states[0]/17.0000) algebraic[14] = 33.0000/(1.00000+exp(-0.125000*(states[0]+10.0000))) rates[9] = algebraic[5]*(1.00000-states[9])-algebraic[14]*states[9] algebraic[1] = states[0]+41.0000 algebraic[10] = custom_piecewise([less(fabs(algebraic[1]) , constants[17]), 2000.00 , True, (200.000*algebraic[1])/(1.00000-exp(-0.100000*algebraic[1]))]) algebraic[18] = 8000.00*exp(-0.0560000*(states[0]+66.0000)) rates[5] = algebraic[10]*(1.00000-states[5])-algebraic[18]*states[5] algebraic[3] = (states[0]+24.0000)-5.00000 algebraic[12] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (30.0000*algebraic[3])/(1.00000-exp(-algebraic[3]/4.00000))]) algebraic[19] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (12.0000*algebraic[3])/(exp(algebraic[3]/10.0000)-1.00000)]) rates[7] = constants[23]*(algebraic[12]*(1.00000-states[7])-algebraic[19]*states[7]) algebraic[4] = states[0]+34.0000 algebraic[13] = custom_piecewise([less(fabs(algebraic[4]) , constants[25]), 25.0000 , True, (6.25000*algebraic[4])/(exp(algebraic[4]/4.00000)-1.00000)]) algebraic[20] = 50.0000/(1.00000+exp((-1.00000*(states[0]+34.0000))/4.00000)) rates[8] = constants[24]*(algebraic[13]*(1.00000-states[8])-algebraic[20]*states[8]) algebraic[8] = power(states[3]/(states[3]+constants[42]), 2.00000) algebraic[22] = 60.0000+500.000*algebraic[8] rates[14] = states[13]*algebraic[22]-1.00000*states[14] algebraic[0] = states[0]+50.0000 algebraic[9] = (0.500000*exp(0.0826000*algebraic[0]))/(1.00000+exp(0.0570000*algebraic[0])) algebraic[17] = states[0]+20.0000 algebraic[23] = (1.30000*exp(-0.0600000*algebraic[17]))/(1.00000+exp(-0.0400000*algebraic[17])) rates[4] = algebraic[9]*(1.00000-states[4])-algebraic[23]*states[4] algebraic[16] = 500.000*algebraic[8] algebraic[25] = (1.00000-states[13])-states[14] rates[13] = algebraic[25]*algebraic[16]-states[13]*algebraic[22] algebraic[21] = ((constants[0]*constants[1])/constants[2])*log(constants[9]/states[1]) algebraic[27] = (((constants[13]*constants[9])/(constants[9]+constants[12]))*(states[0]-algebraic[21]))/(1.00000+exp((((states[0]-algebraic[21])-10.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) algebraic[38] = constants[27]*(constants[28]+states[9]*(1.00000-constants[28]))*states[10]*(states[0]-algebraic[21]) algebraic[28] = (constants[14]*(states[1]-constants[9]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))))/140.000 algebraic[29] = states[4]*algebraic[28] algebraic[34] = (((constants[21]*constants[20]*states[7]*states[8]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[1]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[9]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[30] = constants[15]*(states[0]-algebraic[21]) algebraic[39] = (((constants[29]*constants[9])/(constants[30]+constants[9]))*states[2])/(constants[31]+states[2]) rates[1] = (-1.00000/(1.00000*constants[58]*constants[2]))*((algebraic[27]+algebraic[29]+algebraic[34]+algebraic[38]+algebraic[30])-2.00000*algebraic[39]) algebraic[26] = ((constants[0]*constants[1])/constants[2])*log((constants[10]+0.120000*constants[9])/(states[2]+0.120000*states[1])) algebraic[31] = constants[16]*(power(states[5], 3.00000))*states[6]*(states[0]-algebraic[26]) algebraic[15] = ((constants[0]*constants[1])/constants[2])*log(constants[10]/states[2]) algebraic[32] = constants[19]*(states[0]-algebraic[15]) algebraic[35] = (((constants[22]*constants[20]*states[7]*states[8]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[40] = (constants[32]*(exp((constants[35]*(constants[33]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[2], constants[33]))*constants[11]-exp(((constants[35]-1.00000)*(constants[33]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[10], constants[33]))*states[3]))/((1.00000+constants[34]*(states[3]*(power(constants[10], constants[33]))+constants[11]*(power(states[2], constants[33]))))*(1.00000+states[3]/0.00690000)) algebraic[33] = (((4.00000*constants[20]*states[7]*states[8]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[3]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[11]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) algebraic[24] = ((0.500000*constants[0]*constants[1])/constants[2])*log(constants[11]/states[3]) algebraic[37] = constants[26]*(states[0]-algebraic[24]) algebraic[6] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000]) rates[0] = (-1.00000/constants[3])*(algebraic[6]+algebraic[27]+algebraic[38]+algebraic[29]+algebraic[30]+algebraic[39]+algebraic[31]+algebraic[32]+algebraic[35]+algebraic[40]+algebraic[33]+algebraic[34]+algebraic[37]) rates[2] = (-1.00000/(1.00000*constants[58]*constants[2]))*(algebraic[31]+algebraic[32]+3.00000*algebraic[39]+3.00000*algebraic[40]+algebraic[35]) algebraic[41] = states[3]+states[11]*constants[56]+constants[36]*constants[37]+constants[36] algebraic[42] = (states[3]/algebraic[41])*constants[39]-((states[11]*constants[56])/algebraic[41])*constants[40] algebraic[43] = 50.0000*(states[11]-states[12]) rates[11] = (constants[57]/constants[54])*algebraic[42]-algebraic[43] rates[15] = constants[46]*states[3]*(constants[44]-states[15])-constants[47]*states[15] algebraic[44] = ((power(states[13]/(states[13]+0.250000), 2.00000))*constants[43]+constants[41])*states[12] rates[12] = (constants[54]/constants[52])*algebraic[43]-algebraic[44] rates[16] = constants[48]*states[3]*(constants[45]-states[16])-constants[49]*states[16] rates[3] = ((((-1.00000/(2.00000*1.00000*constants[58]*constants[2]))*((algebraic[33]+algebraic[37])-2.00000*algebraic[40])+(algebraic[44]*constants[52])/constants[57])-rates[15])-rates[16])-algebraic[42] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[2] = 20.0000*exp(-0.125000*((states[0]+75.0000)-constants[18])) algebraic[11] = 2000.00/(1.00000+320.000*exp(-0.100000*((states[0]+75.0000)-constants[18]))) algebraic[5] = 0.0330000*exp(-states[0]/17.0000) algebraic[14] = 33.0000/(1.00000+exp(-0.125000*(states[0]+10.0000))) algebraic[1] = states[0]+41.0000 algebraic[10] = custom_piecewise([less(fabs(algebraic[1]) , constants[17]), 2000.00 , True, (200.000*algebraic[1])/(1.00000-exp(-0.100000*algebraic[1]))]) algebraic[18] = 8000.00*exp(-0.0560000*(states[0]+66.0000)) algebraic[3] = (states[0]+24.0000)-5.00000 algebraic[12] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (30.0000*algebraic[3])/(1.00000-exp(-algebraic[3]/4.00000))]) algebraic[19] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (12.0000*algebraic[3])/(exp(algebraic[3]/10.0000)-1.00000)]) algebraic[4] = states[0]+34.0000 algebraic[13] = custom_piecewise([less(fabs(algebraic[4]) , constants[25]), 25.0000 , True, (6.25000*algebraic[4])/(exp(algebraic[4]/4.00000)-1.00000)]) algebraic[20] = 50.0000/(1.00000+exp((-1.00000*(states[0]+34.0000))/4.00000)) algebraic[8] = power(states[3]/(states[3]+constants[42]), 2.00000) algebraic[22] = 60.0000+500.000*algebraic[8] algebraic[0] = states[0]+50.0000 algebraic[9] = (0.500000*exp(0.0826000*algebraic[0]))/(1.00000+exp(0.0570000*algebraic[0])) algebraic[17] = states[0]+20.0000 algebraic[23] = (1.30000*exp(-0.0600000*algebraic[17]))/(1.00000+exp(-0.0400000*algebraic[17])) algebraic[16] = 500.000*algebraic[8] algebraic[25] = (1.00000-states[13])-states[14] algebraic[21] = ((constants[0]*constants[1])/constants[2])*log(constants[9]/states[1]) algebraic[27] = (((constants[13]*constants[9])/(constants[9]+constants[12]))*(states[0]-algebraic[21]))/(1.00000+exp((((states[0]-algebraic[21])-10.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) algebraic[38] = constants[27]*(constants[28]+states[9]*(1.00000-constants[28]))*states[10]*(states[0]-algebraic[21]) algebraic[28] = (constants[14]*(states[1]-constants[9]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))))/140.000 algebraic[29] = states[4]*algebraic[28] algebraic[34] = (((constants[21]*constants[20]*states[7]*states[8]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[1]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[9]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[30] = constants[15]*(states[0]-algebraic[21]) algebraic[39] = (((constants[29]*constants[9])/(constants[30]+constants[9]))*states[2])/(constants[31]+states[2]) algebraic[26] = ((constants[0]*constants[1])/constants[2])*log((constants[10]+0.120000*constants[9])/(states[2]+0.120000*states[1])) algebraic[31] = constants[16]*(power(states[5], 3.00000))*states[6]*(states[0]-algebraic[26]) algebraic[15] = ((constants[0]*constants[1])/constants[2])*log(constants[10]/states[2]) algebraic[32] = constants[19]*(states[0]-algebraic[15]) algebraic[35] = (((constants[22]*constants[20]*states[7]*states[8]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[40] = (constants[32]*(exp((constants[35]*(constants[33]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[2], constants[33]))*constants[11]-exp(((constants[35]-1.00000)*(constants[33]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[10], constants[33]))*states[3]))/((1.00000+constants[34]*(states[3]*(power(constants[10], constants[33]))+constants[11]*(power(states[2], constants[33]))))*(1.00000+states[3]/0.00690000)) algebraic[33] = (((4.00000*constants[20]*states[7]*states[8]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[3]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[11]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) algebraic[24] = ((0.500000*constants[0]*constants[1])/constants[2])*log(constants[11]/states[3]) algebraic[37] = constants[26]*(states[0]-algebraic[24]) algebraic[6] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000]) algebraic[41] = states[3]+states[11]*constants[56]+constants[36]*constants[37]+constants[36] algebraic[42] = (states[3]/algebraic[41])*constants[39]-((states[11]*constants[56])/algebraic[41])*constants[40] algebraic[43] = 50.0000*(states[11]-states[12]) algebraic[44] = ((power(states[13]/(states[13]+0.250000), 2.00000))*constants[43]+constants[41])*states[12] algebraic[7] = exp(0.0800000*(states[0]-40.0000)) algebraic[36] = algebraic[33]+algebraic[34]+algebraic[35] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)