/* There are a total of 42 entries in the algebraic variable array. There are a total of 14 entries in each of the rate and state variable arrays. There are a total of 44 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is C in component membrane (microF). * CONSTANTS[39] is RTONF in component membrane (millivolt). * ALGEBRAIC[4] is i_f in component hyperpolarising_activated_current (nanoA). * ALGEBRAIC[8] is i_K in component time_dependent_potassium_current (nanoA). * ALGEBRAIC[11] is i_K1 in component time_independent_potassium_current (nanoA). * ALGEBRAIC[12] is i_Na_b in component sodium_background_current (nanoA). * ALGEBRAIC[14] is i_Ca_b in component calcium_background_current (nanoA). * ALGEBRAIC[15] is i_p in component sodium_potassium_pump (nanoA). * ALGEBRAIC[16] is i_NaCa in component Na_Ca_exchanger (nanoA). * ALGEBRAIC[18] is i_Na in component fast_sodium_current (nanoA). * ALGEBRAIC[27] is i_si in component second_inward_current (nanoA). * ALGEBRAIC[2] is i_fNa in component hyperpolarising_activated_current (nanoA). * ALGEBRAIC[0] is E_Na in component hyperpolarising_activated_current (millivolt). * ALGEBRAIC[1] is E_K in component hyperpolarising_activated_current (millivolt). * ALGEBRAIC[3] is i_fK in component hyperpolarising_activated_current (nanoA). * CONSTANTS[4] is g_f_Na in component hyperpolarising_activated_current (microS). * CONSTANTS[5] is g_f_K in component hyperpolarising_activated_current (microS). * CONSTANTS[6] is Km_f in component hyperpolarising_activated_current (millimolar). * CONSTANTS[7] is Kc in component extracellular_potassium_concentration (millimolar). * STATES[1] is Ki in component intracellular_potassium_concentration (millimolar). * STATES[2] is Nai in component intracellular_sodium_concentration (millimolar). * CONSTANTS[8] is Nao in component extracellular_sodium_concentration (millimolar). * STATES[3] is y in component hyperpolarising_activated_current_y_gate (dimensionless). * ALGEBRAIC[5] is alpha_y in component hyperpolarising_activated_current_y_gate (per_second). * ALGEBRAIC[6] is beta_y in component hyperpolarising_activated_current_y_gate (per_second). * CONSTANTS[9] is speed_y in component hyperpolarising_activated_current_y_gate (dimensionless). * ALGEBRAIC[7] is I_K in component time_dependent_potassium_current (nanoA). * CONSTANTS[10] is i_K_max in component time_dependent_potassium_current (nanoA). * STATES[4] is x in component time_dependent_potassium_current_x_gate (dimensionless). * ALGEBRAIC[9] is alpha_x in component time_dependent_potassium_current_x_gate (per_second). * ALGEBRAIC[10] is beta_x in component time_dependent_potassium_current_x_gate (per_second). * CONSTANTS[11] is g_K1 in component time_independent_potassium_current (microS). * CONSTANTS[12] is Km_K1 in component time_independent_potassium_current (millimolar). * CONSTANTS[13] is g_Nab in component sodium_background_current (microS). * ALGEBRAIC[13] is E_Ca in component calcium_background_current (millivolt). * CONSTANTS[14] is g_Cab in component calcium_background_current (microS). * STATES[5] is Cai in component intracellular_calcium_concentration (millimolar). * CONSTANTS[15] is Cao in component extracellular_calcium_concentration (millimolar). * CONSTANTS[16] is I_p in component sodium_potassium_pump (nanoA). * CONSTANTS[17] is K_mK in component sodium_potassium_pump (millimolar). * CONSTANTS[18] is K_mNa in component sodium_potassium_pump (millimolar). * CONSTANTS[19] is n_NaCa in component Na_Ca_exchanger (dimensionless). * CONSTANTS[20] is K_NaCa in component Na_Ca_exchanger (nanoA). * CONSTANTS[21] is d_NaCa in component Na_Ca_exchanger (dimensionless). * CONSTANTS[22] is gamma in component Na_Ca_exchanger (dimensionless). * CONSTANTS[23] is g_Na in component fast_sodium_current (microS). * ALGEBRAIC[17] is E_mh in component fast_sodium_current (millivolt). * STATES[6] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[7] is h in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[20] is alpha_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[21] is beta_m in component fast_sodium_current_m_gate (per_second). * CONSTANTS[24] is delta_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[19] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[22] is alpha_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[23] is beta_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[24] is i_siCa in component second_inward_current (nanoA). * ALGEBRAIC[25] is i_siK in component second_inward_current (nanoA). * ALGEBRAIC[26] is i_siNa in component second_inward_current (nanoA). * CONSTANTS[25] is P_si in component second_inward_current (nanoA_per_millimolar). * STATES[8] is d in component second_inward_current_d_gate (dimensionless). * STATES[9] is f in component second_inward_current_f_gate (dimensionless). * STATES[10] is f2 in component second_inward_current_f2_gate (dimensionless). * ALGEBRAIC[29] is alpha_d in component second_inward_current_d_gate (per_second). * ALGEBRAIC[30] is beta_d in component second_inward_current_d_gate (per_second). * CONSTANTS[26] is delta_d in component second_inward_current_d_gate (millivolt). * ALGEBRAIC[28] is E0_d in component second_inward_current_d_gate (millivolt). * ALGEBRAIC[32] is alpha_f in component second_inward_current_f_gate (per_second). * ALGEBRAIC[33] is beta_f in component second_inward_current_f_gate (per_second). * CONSTANTS[27] is delta_f in component second_inward_current_f_gate (millivolt). * ALGEBRAIC[31] is E0_f in component second_inward_current_f_gate (millivolt). * CONSTANTS[28] is alpha_f2 in component second_inward_current_f2_gate (per_second). * ALGEBRAIC[34] is beta_f2 in component second_inward_current_f2_gate (per_second). * CONSTANTS[29] is K_mf2 in component second_inward_current_f2_gate (millimolar). * CONSTANTS[30] is radius in component intracellular_sodium_concentration (millimetre). * CONSTANTS[31] is length in component intracellular_sodium_concentration (millimetre). * CONSTANTS[32] is V_e_ratio in component intracellular_sodium_concentration (dimensionless). * CONSTANTS[40] is V_Cell in component intracellular_sodium_concentration (millimetre3). * CONSTANTS[41] is Vi in component intracellular_sodium_concentration (millimetre3). * CONSTANTS[42] is V_up in component intracellular_calcium_concentration (millimetre3). * CONSTANTS[43] is V_rel in component intracellular_calcium_concentration (millimetre3). * ALGEBRAIC[35] is i_up in component intracellular_calcium_concentration (nanoA). * ALGEBRAIC[36] is i_tr in component intracellular_calcium_concentration (nanoA). * ALGEBRAIC[40] is i_rel in component intracellular_calcium_concentration (nanoA). * STATES[11] is Ca_up in component intracellular_calcium_concentration (millimolar). * STATES[12] is Ca_rel in component intracellular_calcium_concentration (millimolar). * CONSTANTS[33] is Ca_up_max in component intracellular_calcium_concentration (millimolar). * CONSTANTS[34] is K_mCa in component intracellular_calcium_concentration (millimolar). * STATES[13] is p in component intracellular_calcium_concentration (dimensionless). * ALGEBRAIC[38] is alpha_p in component intracellular_calcium_concentration (per_second). * ALGEBRAIC[39] is beta_p in component intracellular_calcium_concentration (per_second). * ALGEBRAIC[37] is E0_p in component intracellular_calcium_concentration (millivolt). * CONSTANTS[35] is tau_up in component intracellular_calcium_concentration (second). * CONSTANTS[36] is tau_rep in component intracellular_calcium_concentration (second). * CONSTANTS[37] is tau_rel in component intracellular_calcium_concentration (second). * CONSTANTS[38] is rCa in component intracellular_calcium_concentration (dimensionless). * ALGEBRAIC[41] is i_mK in component intracellular_potassium_concentration (nanoA). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[3] is d/dt y in component hyperpolarising_activated_current_y_gate (dimensionless). * RATES[4] is d/dt x in component time_dependent_potassium_current_x_gate (dimensionless). * RATES[6] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[7] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[8] is d/dt d in component second_inward_current_d_gate (dimensionless). * RATES[9] is d/dt f in component second_inward_current_f_gate (dimensionless). * RATES[10] is d/dt f2 in component second_inward_current_f2_gate (dimensionless). * RATES[2] is d/dt Nai in component intracellular_sodium_concentration (millimolar). * RATES[13] is d/dt p in component intracellular_calcium_concentration (dimensionless). * RATES[11] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar). * RATES[12] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar). * RATES[5] is d/dt Cai in component intracellular_calcium_concentration (millimolar). * RATES[1] is d/dt Ki in component intracellular_potassium_concentration (millimolar). * There are a total of 4 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -67.797059970601; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 310; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 6e-5; CONSTANTS[4] = 0.06; CONSTANTS[5] = 0.06; CONSTANTS[6] = 45; CONSTANTS[7] = 3; STATES[1] = 139.859968229045; STATES[2] = 7.51007221193712; CONSTANTS[8] = 140; STATES[3] = 0.0743464067197738; CONSTANTS[9] = 2; CONSTANTS[10] = 0.8; STATES[4] = 0.129303443591363; CONSTANTS[11] = 0.0075; CONSTANTS[12] = 10; CONSTANTS[13] = 0.0007; CONSTANTS[14] = 0.0001; STATES[5] = 5.84191784887783e-5; CONSTANTS[15] = 2; CONSTANTS[16] = 0.45; CONSTANTS[17] = 1; CONSTANTS[18] = 40; CONSTANTS[19] = 3; CONSTANTS[20] = 2e-5; CONSTANTS[21] = 0.0001; CONSTANTS[22] = 0.5; CONSTANTS[23] = 0.0125; STATES[6] = 0.042697621819783; STATES[7] = 0.138105285882671; CONSTANTS[24] = 1e-5; CONSTANTS[25] = 0.12; STATES[8] = 1.26333192869164e-5; STATES[9] = 0.999507224159629; STATES[10] = 0.485471180273736; CONSTANTS[26] = 0.0001; CONSTANTS[27] = 0.0001; CONSTANTS[28] = 10; CONSTANTS[29] = 0.0005; CONSTANTS[30] = 0.008; CONSTANTS[31] = 0.11; CONSTANTS[32] = 0.1; STATES[11] = 3.70806465918854; STATES[12] = 0.177741556496929; CONSTANTS[33] = 5; CONSTANTS[34] = 0.002; STATES[13] = 0.176207580044253; CONSTANTS[35] = 0.005; CONSTANTS[36] = 0.2; CONSTANTS[37] = 0.01; CONSTANTS[38] = 2; CONSTANTS[39] = ( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2]; CONSTANTS[40] = 3.14159*pow(CONSTANTS[30], 2.00000)*CONSTANTS[31]; CONSTANTS[41] = CONSTANTS[40]*(1.00000 - CONSTANTS[32]); CONSTANTS[42] = CONSTANTS[41]*0.0500000; CONSTANTS[43] = CONSTANTS[41]*0.0200000; RATES[0] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[2] = 0.1001; RATES[13] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[5] = 0.1001; RATES[1] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[4]+ALGEBRAIC[8]+ALGEBRAIC[11]+ALGEBRAIC[12]+ALGEBRAIC[14]+ALGEBRAIC[15]+ALGEBRAIC[16]+ALGEBRAIC[18]+ALGEBRAIC[27])/CONSTANTS[3]; resid[1] = RATES[3] - CONSTANTS[9]*( ALGEBRAIC[5]*(1.00000 - STATES[3]) - ALGEBRAIC[6]*STATES[3]); resid[2] = RATES[4] - ALGEBRAIC[9]*(1.00000 - STATES[4]) - ALGEBRAIC[10]*STATES[4]; resid[3] = RATES[6] - ALGEBRAIC[20]*(1.00000 - STATES[6]) - ALGEBRAIC[21]*STATES[6]; resid[4] = RATES[7] - ALGEBRAIC[22]*(1.00000 - STATES[7]) - ALGEBRAIC[23]*STATES[7]; resid[5] = RATES[8] - ALGEBRAIC[29]*(1.00000 - STATES[8]) - ALGEBRAIC[30]*STATES[8]; resid[6] = RATES[9] - ALGEBRAIC[32]*(1.00000 - STATES[9]) - ALGEBRAIC[33]*STATES[9]; resid[7] = RATES[10] - CONSTANTS[28] - STATES[10]*(CONSTANTS[28]+ALGEBRAIC[34]); resid[8] = RATES[2] - ( - 1.00000*(ALGEBRAIC[18]+ALGEBRAIC[12]+ALGEBRAIC[2]+ALGEBRAIC[26]+ ALGEBRAIC[15]*3.00000+( ALGEBRAIC[16]*CONSTANTS[19])/(CONSTANTS[19] - 2.00000)))/( 1.00000*CONSTANTS[41]*CONSTANTS[2]); resid[9] = RATES[13] - ALGEBRAIC[38]*(1.00000 - STATES[13]) - ALGEBRAIC[39]*STATES[13]; resid[10] = RATES[11] - ( 1.00000*(ALGEBRAIC[35] - ALGEBRAIC[36]))/( 2.00000*1.00000*CONSTANTS[42]*CONSTANTS[2]); resid[11] = RATES[12] - ( 1.00000*(ALGEBRAIC[36] - ALGEBRAIC[40]))/( 2.00000*1.00000*CONSTANTS[43]*CONSTANTS[2]); resid[12] = RATES[5] - ( - 1.00000*((((ALGEBRAIC[24]+ALGEBRAIC[14]) - ( 2.00000*ALGEBRAIC[16])/(CONSTANTS[19] - 2.00000)) - ALGEBRAIC[40])+ALGEBRAIC[35]))/( 2.00000*1.00000*CONSTANTS[41]*CONSTANTS[2]); resid[13] = RATES[1] - ( - 1.00000*ALGEBRAIC[41])/( 1.00000*CONSTANTS[41]*CONSTANTS[2]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = CONSTANTS[39]*log(CONSTANTS[8]/STATES[2]); ALGEBRAIC[2] = (( pow(STATES[3], 2.00000)*CONSTANTS[7])/(CONSTANTS[7]+CONSTANTS[6]))*CONSTANTS[4]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[1] = CONSTANTS[39]*log(CONSTANTS[7]/STATES[1]); ALGEBRAIC[3] = (( pow(STATES[3], 2.00000)*CONSTANTS[7])/(CONSTANTS[7]+CONSTANTS[6]))*CONSTANTS[5]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[4] = ALGEBRAIC[2]+ALGEBRAIC[3]; ALGEBRAIC[5] = 0.0140000*exp(- STATES[0]/16.0000); ALGEBRAIC[6] = 9.75000*exp(STATES[0]/19.0000); ALGEBRAIC[7] = ( CONSTANTS[10]*(STATES[1] - CONSTANTS[7]*exp(- STATES[0]/CONSTANTS[39])))/140.000; ALGEBRAIC[8] = STATES[4]*ALGEBRAIC[7]; ALGEBRAIC[9] = 2.10000*exp(STATES[0]/28.0000); ALGEBRAIC[10] = 0.960000*exp(- STATES[0]/24.0000); ALGEBRAIC[11] = ( (( CONSTANTS[11]*CONSTANTS[7])/(CONSTANTS[7]+CONSTANTS[12]))*(STATES[0] - ALGEBRAIC[1]))/(1.00000+exp(( ((STATES[0]+10.0000) - ALGEBRAIC[1])*2.00000)/CONSTANTS[39])); ALGEBRAIC[12] = CONSTANTS[13]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[13] = 0.500000*CONSTANTS[39]*log(CONSTANTS[15]/STATES[5]); ALGEBRAIC[14] = CONSTANTS[14]*(STATES[0] - ALGEBRAIC[13]); ALGEBRAIC[15] = ( (( CONSTANTS[16]*CONSTANTS[7])/(CONSTANTS[17]+CONSTANTS[7]))*STATES[2])/(CONSTANTS[18]+STATES[2]); ALGEBRAIC[16] = ( CONSTANTS[20]*( exp(( CONSTANTS[22]*(CONSTANTS[19] - 2.00000)*STATES[0])/CONSTANTS[39])*pow(STATES[2], CONSTANTS[19])*CONSTANTS[15] - exp(( (CONSTANTS[22] - 1.00000)*(CONSTANTS[19] - 2.00000)*STATES[0])/CONSTANTS[39])*pow(CONSTANTS[8], CONSTANTS[19])*STATES[5]))/( (1.00000+ CONSTANTS[21]*( STATES[5]*pow(CONSTANTS[8], CONSTANTS[19])+ CONSTANTS[15]*pow(STATES[2], CONSTANTS[19])))*(1.00000+STATES[5]/0.00690000)); ALGEBRAIC[17] = CONSTANTS[39]*log((CONSTANTS[8]+ 0.120000*CONSTANTS[7])/(STATES[2]+ 0.120000*STATES[1])); ALGEBRAIC[18] = CONSTANTS[23]*pow(STATES[6], 3.00000)*STATES[7]*(STATES[0] - ALGEBRAIC[17]); ALGEBRAIC[19] = STATES[0]+41.0000; ALGEBRAIC[20] = (CONDVAR[0]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[19])/(1.00000 - exp( - 0.100000*ALGEBRAIC[19]))); ALGEBRAIC[21] = 8000.00*exp( - 0.0560000*(STATES[0]+66.0000)); ALGEBRAIC[22] = 20.0000*exp( - 0.125000*(STATES[0]+75.0000)); ALGEBRAIC[23] = 2000.00/( 320.000*exp( - 0.100000*(STATES[0]+75.0000))+1.00000); ALGEBRAIC[24] = (( 4.00000*CONSTANTS[25]*(STATES[0] - 50.0000))/( CONSTANTS[39]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000)*2.00000)/CONSTANTS[39]))))*( STATES[5]*exp(100.000/CONSTANTS[39]) - CONSTANTS[15]*exp(( - 2.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))*STATES[8]*STATES[9]*STATES[10]; ALGEBRAIC[26] = (( 0.0100000*CONSTANTS[25]*(STATES[0] - 50.0000))/( CONSTANTS[39]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))))*( STATES[2]*exp(50.0000/CONSTANTS[39]) - CONSTANTS[8]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))*STATES[8]*STATES[9]*STATES[10]; ALGEBRAIC[25] = (( 0.0100000*CONSTANTS[25]*(STATES[0] - 50.0000))/( CONSTANTS[39]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))))*( STATES[1]*exp(50.0000/CONSTANTS[39]) - CONSTANTS[7]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))*STATES[8]*STATES[9]*STATES[10]; ALGEBRAIC[27] = ALGEBRAIC[24]+ALGEBRAIC[25]+ALGEBRAIC[26]; ALGEBRAIC[28] = (STATES[0]+24.0000) - 5.00000; ALGEBRAIC[29] = (CONDVAR[1]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[28])/(1.00000 - exp(( - 1.00000*ALGEBRAIC[28])/4.00000))); ALGEBRAIC[30] = (CONDVAR[2]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[28])/(exp(ALGEBRAIC[28]/10.0000) - 1.00000)); ALGEBRAIC[31] = STATES[0]+34.0000; ALGEBRAIC[32] = (CONDVAR[3]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[31])/(exp(ALGEBRAIC[31]/4.00000) - 1.00000)); ALGEBRAIC[33] = 50.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000)); ALGEBRAIC[34] = ( STATES[5]*CONSTANTS[28])/CONSTANTS[29]; ALGEBRAIC[35] = (( 2.00000*1.00000*CONSTANTS[41]*CONSTANTS[2])/( 1.00000*CONSTANTS[35]*CONSTANTS[33]))*STATES[5]*(CONSTANTS[33] - STATES[11]); ALGEBRAIC[36] = (( 2.00000*1.00000*CONSTANTS[43]*CONSTANTS[2])/( 1.00000*CONSTANTS[36]))*STATES[13]*(STATES[11] - STATES[12]); ALGEBRAIC[37] = (STATES[0]+34.0000) - - 30.0000; ALGEBRAIC[38] = ( 0.625000*ALGEBRAIC[37])/(exp(ALGEBRAIC[37]/4.00000) - 1.00000); ALGEBRAIC[39] = 5.00000/(1.00000+exp(( - 1.00000*ALGEBRAIC[37])/4.00000)); ALGEBRAIC[40] = ( (( 2.00000*1.00000*CONSTANTS[43]*CONSTANTS[2])/( 1.00000*CONSTANTS[37]))*STATES[12]*pow(STATES[5], CONSTANTS[38]))/(pow(STATES[5], CONSTANTS[38])+pow(CONSTANTS[34], CONSTANTS[38])); ALGEBRAIC[41] = (ALGEBRAIC[11]+ALGEBRAIC[8]+ALGEBRAIC[3]+ALGEBRAIC[25]) - 2.00000*ALGEBRAIC[15]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = fabs(ALGEBRAIC[19]) - CONSTANTS[24]; CONDVAR[1] = fabs(ALGEBRAIC[28]) - CONSTANTS[26]; CONDVAR[2] = fabs(ALGEBRAIC[28]) - CONSTANTS[26]; CONDVAR[3] = fabs(ALGEBRAIC[31]) - CONSTANTS[27]; }