
OpenCOR Tutorial
Release 0.18.0-alpha

Peter Hunter

Dec 19, 2019

CONTENTS

1 Background to the VPH-Physiome project 3

2 Install and Launch OpenCOR 5

3 Create and run a simple CellML model: editing and simulation 7

4 Open an existing CellML file from a local directory or the Physiome Model Repository 13

5 A simple first order ODE 15

6 The Lorenz attractor 17

7 A model of ion channel gating and current: Introducing CellML units 21

8 A model of the potassium channel: Introducing CellML components and connections 27

9 A model of the sodium channel: Introducing CellML encapsulation and interfaces 33

10 A model of the nerve action potential: Introducing CellML imports 39

11 A model of the cardiac action potential: Importing units and parameters 47

12 Code generation 57

13 Model annotation 59

14 The Physiome Model Repository and the link to bioinformatics 65

15 Using PMR with OpenCOR 69

16 SED-ML, functional curation and Web Lab 73

17 Using OpenCOR with Python (beta) 75

18 Speed comparisons with MATLAB 83

19 References 85

Bibliography 87

i

ii

OpenCOR Tutorial, Release 0.18.0-alpha

Note: This tutorial originated from a translation from a single Word document in July 2015. Aspects
of formatting and presentation may need further work. For reference, the original tutorial is available here:
OpenCOR-Tutorial-v17.pdf.

The current tutorial has now progressed well beyond the original version and we recommend using this online
version or the PDF available via ReadTheDocs.

This tutorial shows you how to install and run the OpenCOR1 software [APJ15], to author and edit CellML mod-
els2 [DPPJ03] and to use the Physiome Model Repository (PMR)3 [eal11]. We start by giving a brief background
on the VPH-Physiome project. We then create a simple model, save it as a CellML file and run model simulations.
We next try opening existing CellML models, both from a local directory and from the Physiome Model Repos-
itory. The various features of CellML4 and OpenCOR are then explained in the context of increasingly complex
biological models. A simple linear first order ODE model and a nonlinear third order model are introduced. Ion
channel gating models are used to introduce the way that CellML handles units, components, encapsulation groups
and connections. More complex potassium and sodium ion channel models are then developed and subsequently
imported into the Hodgkin-Huxley 1952 squid axon neural model using the CellML model import facility. The
Noble 1962 model of a cardiac cell action potential is used to illustrate importing of units and parameters. The
tutorial finishes with sections on model annotation and the facilities available on the CellML website and the
Physiome Model Repository to support model development, including the links to bioinformatic databases. There
is a strong emphasis in the tutorial on establishing ‘best practice’ in the creation of CellML models and using the
PMR resources, particularly in relation to modular approaches (model hierarchies) and model annotation.

Note: This tutorial relies on readers having some background in algebra and calculus, but tries to explain all
mathematical concepts beyond this, along with the physical principles, as they are needed for the development of
CellML models.5

1 OpenCOR is an open source, freely available, C++ desktop application written by Alan Garny at INRIA with funding support from the
Auckland Bioengineering Institute (http://www.abi.auckland.ac.nz) and the NIH-funded Virtual Physiological Rat (VPR) project led by Dan
Beard at the University of Michigan (http://virtualrat.org).

2 For an overview and the background of CellML see http://www.cellml.org. This project is led by Poul Nielsen and David (Andre)
Nickerson at the Auckland (University) Bioengineering Institute (ABI).

3 https://models.physiomeproject.org. The PMR project is led by Tommy Yu at the ABI.
4 For details on the specifications of CellML1.0 see http://www.cellml.org/specifications/cellml_1.0.
5 Please send any errors discovered or suggested improvements to p.hunter@auckland.ac.nz.

CONTENTS 1

http://tutorial-on-cellml-opencor-and-pmr.readthedocs.io/
http://www.abi.auckland.ac.nz
http://virtualrat.org
http://www.cellml.org
http://www.abi.auckland.ac.nz
https://models.physiomeproject.org
http://www.cellml.org/specifications/cellml_1.0
mailto:p.hunter@auckland.ac.nz

OpenCOR Tutorial, Release 0.18.0-alpha

2 CONTENTS

CHAPTER

ONE

BACKGROUND TO THE VPH-PHYSIOME PROJECT

To be of benefit to applications in healthcare, organ and whole organism physiology
needs to be understood at both a systems level and in terms of subcellular function
and tissue properties. Understanding a re-entrant arrhythmia in the heart, for exam-
ple, depends on knowledge of not only numerous cellular ionic current mechanisms
and signal transduction pathways, but also larger scale myocardial tissue structure
and the spatial variation in protein expression. As reductionist biomedical science
succeeds in elucidating ever more detail at the molecular level, it is increasingly dif-
ficult for physiologists to relate integrated whole organ function to underlying bio-
physically detailed mechanisms that exploit this molecular knowledge. Multi-scale
computational modelling is used by engineers and physicists to design and anal-
yse mechanical, electrical and chemical engineering systems. Similar approaches
could benefit the understanding of physiological systems. To address these chal-
lenges and to take advantage of bioengineering approaches to modelling anatomy
and physiology, the International Union of Physiological Sciences (IUPS) formed
the Physiome Project in 1997 as an international collaboration to provide a compu-
tational framework for understanding human physiology1.

1.1 Primary Goals

One of the primary goals of the Physiome Project [PJ04] has been to promote the
development of standards for the exchange of information between models. The
first of these standards, dealing with time varying but spatially lumped processes, is
CellML [VarYY]. The second (dealing with spatially and time varying processes)
is FieldML [CPJ09][P13]2. A further goal of the Physiome Project has been the de-
velopment of open source tools for creating and visualizing standards-based mod-
els and running model simulations. OpenCOR is the latest in a series of software
projects aimed at providing a modelling environment for CellML models. Similar
tools exist for FieldML models.

Following the publication of the STEP3 (Strategy for a European Physiome)
Roadmap in 2006, the European Commission in 2007 initiated the Virtual Phys-
iological Human (VPH) project [ea13]. A related US initiative by the Interagency
Modeling and Analysis Group (IMAG) began in 20034. These projects and similar

1 www.iups.org. The IUPS President, Denis Noble from Oxford University, and Jim Bassingthwaighte from the University of Washington
in Seattle have been two of the driving forces behind the Physiome Project. Peter Hunter from the University of Auckland was appointed Chair
of the newly created Physiome Commission of the IUPS in 2000. The IUPS Physiome Committee, formed in 2008, was co-chaired by Peter
Hunter and Sasha Popel (JHU) and is now chaired by Andrew McCulloch from UCSD. The UK Wellcome Trust provided initial support for
the Physiome Project through the Heart Physiome grant awarded in 2004 to David Paterson, Denis Noble and Peter Hunter.

2 CellML began as a joint public-private initiative in 1998 with funding by the US company Physiome Sciences (CEO Jeremy Levin),
before being launched under IUPS as a fully open source project in 1999.

3 The STEP report, led by Marco Viceconte (University of Sheffield, UK), is available at www.europhysiome.org/roadmap.
4 This coordinates various US Governmental funding agencies involved in multi-scale bioengineering modeling research including NIH,

NSF, NASA, the Dept of Energy (DoE), the Dept of Defense (DoD), the US Dept of Agriculture and the Dept of Veteran Affairs. See
www.nibib.nih.gov/Research/MultiScaleModeling/IMAG. Grace Peng of NHBIB leads the IMAG group.

3

endnotes.xml
media/image2.png
media/image3.jpeg

OpenCOR Tutorial, Release 0.18.0-alpha

initiatives are now coordinated and are collectively referred to here as the ‘VPH-
Physiome’ project5. The VPH-Institute6 was formed in 2012 as a virtual organisa-
tion to providing strategic leadership, initially in Europe but now globally, for the
VPH-Physiome Project.

5 Other significant contributions to the VPH-Physiome project have come from Yoshi Kurachi in Japan (www.physiome.jp), Stig Omholt
in Norway (www.ntnu) and Chae-Hun Leem in Korea (www.physiome.or.kr).

6 www.vph-institute.org. Formed in 2012, the inaugural Director was Marco Viceconti. The current Director is Adriano Henney. The
inaugural and current President of the VPH-Institute is Denis Noble.

4 Chapter 1. Background to the VPH-Physiome project

media/image4.tiff
media/image5.png
media/image6.jpeg
media/image7.png

CHAPTER

TWO

INSTALL AND LAUNCH OPENCOR

Download OpenCOR from www.opencor.ws. Versions are available for Windows, OS X and Linux1. Note that
some aspects of this tutorial require OpenCOR snapshot 2017-02-10 (or newer). Create a shortcut to the executable
(found in the bin directory) on your desktop and click on this to launch OpenCOR. A window will appear that
looks like Fig. 2.1(a).

Fig. 2.1: OpenCOR application (a) Default positioning of dockable windows. (b) An alternative configuration
achieved by dragging and dropping the dockable windows.

2.1 Dockable Windows

The central area is used to interact with files. By default, no files are open, hence the OpenCOR logo is shown
instead. To the sides, there are dockable windows, which provide additional features. Those windows can be
dragged and dropped to the top or bottom of the central area as shown in Figure 1(b) or they can be individually
undocked or closed. All closed panels can be re-displayed by enabling them in the View menu, or by using the
Tools menu Reset All option. The key combination Control-spacebar removes (for less clutter) or restores
these two side panels2.

Any of the subpanels (Physiome Model Repository, File Browser, and File Organiser) can be closed with the top
right delete button, and then restored from the View .. Windows .. menu. Files can be dragged and dropped into
the File Organiser to create a local directory structure for your files.

1 http://opencor.ws/user/supportedPlatforms.html
2 -spacebar being the equivalent on OS X.

5

http://www.opencor.ws
http://opencor.ws/user/supportedPlatforms.html

OpenCOR Tutorial, Release 0.18.0-alpha

2.2 Plugins

OpenCOR has a plugin architecture and can be used with or without a range of modules. These can be viewed
under the Tools menu. By default they are all included, as shown in Fig. 2.2. Information about developing plugins
for OpenCOR is also available.

Fig. 2.2: OpenCOR tools menu showing the plugins that are selectable. Untick the box on the bottom left to show
all plugins.

6 Chapter 2. Install and Launch OpenCOR

https://www.opencor.ws/developer/develop/plugins/index.html

CHAPTER

THREE

CREATE AND RUN A SIMPLE CELLML MODEL: EDITING AND
SIMULATION

In this example we create a simple CellML model and run it. The model is the Van der Pol oscillator1 defined by
the second order equation

𝑑2𝑥

𝑑𝑡2
− 𝜇

(︀
1 − 𝑥2

)︀ dx
dt

+ 𝑥 = 0

with initial conditions 𝑥 = −2; dx
dt = 0. The parameter 𝜇 controls the magnitude of the damping term. To create

a CellML model we convert this to two first order equations2 by defining the velocity dx
dt as a new variable 𝑦:

dx
dt

= 𝑦 (3.1)

dy
dt

= 𝜇
(︀
1 − 𝑥2

)︀
𝑦 − 𝑥 (3.2)

The initial conditions are now 𝑥 = −2; 𝑦 = 0.

With the central pane in Editing mode (e.g. CellML Text view), create a new CellML file: File → New → CellML
File and then type in the following lines of code after deleting the three lines that indicate where the code should
go:

def model van_der_pol_model as
def comp main as

var t: dimensionless {init: 0};
var x: dimensionless {init: -2};
var y: dimensionless {init: 0};
var mu: dimensionless {init: 1};
// These are the ODEs
ode(x,t)=y;
ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;

enddef;
enddef;

Things to note3 are:

i. the closing semicolon at the end of each line (apart from the first two def statements that are opening a
CellML construct);

ii. the need to indicate dimensions for each variable and constant (all dimensionless in this example – but more
on dimensions later);

iii. the use of ode(x,t) to indicate a first order4 ODE in x and t

iv. the use of the squaring function sqr(x) for 𝑥2, and

1 http://en.wikipedia.org/wiki/Van_der_Pol_oscillator
2 Equations (3.1) and (3.2) are equations that are implemented directly in OpenCOR.
3 For more on the CellML Text view see http://opencor.ws/user/plugins/editing/CellMLTextView.html.
4 Note that a more elaborated version of this is ode(x, t, 1{dimensionless}) and a 2nd order ODE can be specified as ode(x,

t, 2{dimensionless}). 1st order is assumed as the default.

7

http://en.wikipedia.org/wiki/Van_der_Pol_oscillator
http://opencor.ws/user/plugins/editing/CellMLTextView.html

OpenCOR Tutorial, Release 0.18.0-alpha

v. the use of ‘//’ to indicate a comment.

A partial list of mathematical functions available for OpenCOR is:

𝑥2 sqr(x)
√
𝑥 sqrt(x) ln𝑥 ln(x) log10 𝑥 log(x) 𝑒𝑥 exp(x) 𝑥𝑎 pow(x,a)

sin𝑥 sin(x) cos𝑥 cos(x) tan𝑥 tan(x) csc𝑥 csc(x) sec𝑥 sec(x) cot𝑥 cot(x)
sin−1 𝑥 asin(x) cos−1 𝑥 acos(x) tan−1 𝑥 atan(x) csc−1 𝑥 acsc(x) sec−1 𝑥 asec(x) cot−1 𝑥 acot(x)
sinh𝑥 sinh(x) cosh𝑥 cosh(x) tanh𝑥 tanh(x) csch𝑥 csch(x) sech𝑥 sech(x) coth𝑥 coth(x)
sinh−1 𝑥 as-

inh(x)
cosh−1 𝑥 acosh(x) tanh−1 𝑥 atanh(x) csch−1 𝑥 ac-

sch(x)
sech−1 𝑥 asech(x) coth−1 𝑥 acoth(x)

Table 1. Partial list of mathematical functions available for coding in OpenCOR.

Positioning the cursor over either of the ODEs renders the maths in standard form above the code as shown in Fig.
3.1.

Note that CellML is a declarative language5 (unlike say C, Fortran or Matlab, which are procedural languages) and
therefore the order of statements does not affect the solution. For example, the order of the ODEs could equally
well be

ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
ode(x,t)=y;

The significance of this will become apparent later when we import several CellML models to create a composite
model.

Fig. 3.1: (a) Positioning the cursor over an equation and clicking (shown by the highlighted line) renders the
maths. (b) Once the model has been successfully saved, the CellML Text view tab becomes white rather than grey.
The right hand tabs provide different views of the CellML code.

Now save the code to a local folder using Save under the File menu (File → Save) (or ‘CTRL-S’) and choosing
.cellml as the file format6. With the CellML model saved various views, accessed via the tabs on the right hand
edge of the window, become available. One is the CellML Text view (the view used to enter the code above);
another is the Raw CellML view that displays the way the model is stored and is intentionally verbose to ensure
that the meaning is always unambiguous (note that positioning the cursor over part of the code shows the maths in
this view also); and another is the Raw view. Notice that ‘CTRL-T’ in the Raw CellML view performs validation
tests on the CellML model. The CellML Text view provides a much more convenient format for entering and
editing the CellML model.

With the equations and initial conditions defined, we are ready to run the model. To do this, click on the Simulation
tab on the left hand edge of the window. You will see three main areas - at the left hand side of the window are

5 Note also that the mathematical expressions in CellML are based on MathML – see http://www.w3.org/Math/
6 Note that .cellml is not strictly required but is best practice.

8 Chapter 3. Create and run a simple CellML model: editing and simulation

http://www.w3.org/Math/

OpenCOR Tutorial, Release 0.18.0-alpha

the Simulation, Solvers, Graphs and Parameters panels, which are explained below. At the right hand side is the
graphical output window, and running along the bottom of the window is a status area, where status messages are
displayed.

3.1 Simulation Panel

This area is used to set up the simulation settings.

• Starting point - the value of the variable of integration (often time) at which the simulation will begin. Leave
this at 0.

• Ending point - the point at which the simulation will end. Set to 100.

• Point interval - the interval between data points on the variable of integration. Set to 0.1.

Just above the Simulation panel are controls for running the simulation. These are:

Run (), Pause (), Reset parameters (), Clear simulation data (), Interval delay (),

Add()/Subtract() graphical output windows and Output solution to a CSV file ().

For this model, we suggest that you create three graphical output windows using the + button.

3.2 Solvers Panel

This area is used to configure the solver that will run the simulation.

• Name - this is used to set the solver algorithm. It will be set by default to be the most appropriate solver
for the equations you are solving. OpenCOR allows you to change this to another solver appropriate to the
type of equations you are solving if you choose to. For example, CVODE for ODE (ordinary differential
equation) problems, IDA for DAE (differential algebraic equation) problems, KINSOL for NLA (non-linear
algebraic) problems7.

• Other parameters for the chosen solver – e.g. Maximum step, Maximum number of steps, and Tolerance
settings for CVODE and IDA. For more information on the solver parameters, please refer to the documen-
tation for the particular solver.

Note: these can all be left at their default values for our simple demo problem8.

3.3 Graphs Panel

This shows what parameters are being plotted once these have been defined in the Parameters panel. These can
be selected/deselected by clicking in the box next to a parameter.

7 Other solvers include forward Euler, Heun and Runga-Kutta solvers (RK2 and RK4).
8 Note that a model that requires a stimulus protocol should have the maximum step value of the CVODE solver set to the length of the

stimulus.

3.1. Simulation Panel 9

OpenCOR Tutorial, Release 0.18.0-alpha

3.4 Parameters Panel

This panel lists all the model parameters, and allows you to select one or more to plot against the variable of
integration or another parameter in the graphical output windows. OpenCOR supports graphing of any parameter
against any other. All variables from the model are listed here, arranged by the components in which they appear,
and in alphabetical order. Parameters are displayed with their variable name, their value, and their units. The icons
alongside them have the following meanings:

Editable constant Editable state variable

Computed constant Rate variable

Variable of integration Algebraic quantity

Right clicking on a parameter provides the options for displaying that parameter in the currently selected graphical
output window. With the cursor highlighting the top graphical output window (a blue line appears next to it), select
x then Plot Against Variable of Integration – in this case t - in order to plot x(t). Now move the cursor to the second
graphical output window and select y then t to plot y(t). Finally select the bottom graphical output window, select
y and select Plot Against then Main then x to plot y(x).

Now click on the Run control. You will see a progress bar running along the bottom of the status window. Status
messages about the successful simulation, including the time taken, are displayed in the bottom panel. This can be
hidden by dragging down on the bar just above the panel. Fig. 3.2 shows the results. Use the interval delay wheel
to slow down the plotting if you want to watch the solution evolve. You can also pause the simulation at any time
by clicking on the Run control and if you change a parameter during the pause, the simulation will continue (when
you click the Run control button again) with the new parameter.

Note that the values shown for the various parameters are the values they have at the end of the solution run. To

restore these to their initial values, use the Reset parameters () button. To clear the graphical output traces,

click on the Clear simulation data () button.

The top two graphical output panels are showing the time-dependent solution of the x and y variables. The bottom
panel shows how y varies as a function of x. This is called the solution in state space and it is often useful to
analyse the state space solution to capture the key characteristics of the equations being solved.

10 Chapter 3. Create and run a simple CellML model: editing and simulation

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 3.2: Graphical output from OpenCOR. The top window is x(t), the middle is y(t) and the bottom is y(x). The
Graphs panel shows that y(x) is being plotted on the graph output window highlighted by the LH blue line. The
window at the very bottom provides runtime information on the type of equation being solved and the simulation
time (2ms in this case). The computed variables shown in the left hand panel are at the values they have at the end
of the simulation.

To obtain numerical values for all variables (i.e. x(t) and y(t)), click on the CSV file button (). You will be
asked to enter a filename and type (use .csv). Opening this file (e.g. with Microsoft Excel) provides access to the
numerical values. Other output types (e.g. BiosignalML) will be available in future versions of OpenCOR.

You can move the graphical output traces around with ‘left click and drag’ and you can change the horizontal or
vertical scale with ‘right click and drag’. Holding the SHIFT key down while clicking on a graphical output panel
allows you to interrogate the solution at any point. Right clicking on a panel provides zoom facilities.

Note: The simulation described above can also be loaded and run directly in OpenCOR using this link.

The various plugins used by OpenCOR can be viewed under the Tools menu. A French language version of
OpenCOR is also available under the Tools menu. An option under the File menu allows a file to be locked (also
‘CTRL-L’). To indicate that the file is locked, the background colour switches to pink in the CellML Text and Raw
CellML views and a lock symbol appears on the filename tab. Note that OpenCOR text is case sensitive.

3.4. Parameters Panel 11

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/8a37f2ca3961ff783c054b5763364c596caa66bc/vanderpol.sedml

OpenCOR Tutorial, Release 0.18.0-alpha

12 Chapter 3. Create and run a simple CellML model: editing and simulation

CHAPTER

FOUR

OPEN AN EXISTING CELLML FILE FROM A LOCAL DIRECTORY
OR THE PHYSIOME MODEL REPOSITORY

Go to the File menu and select Open. . . (File → Open). Browse to the folder that contains your existing models
and select one. Note that this brings up a new tabbed window and you can have any number of CellML models
open at the same time in order to quickly move between them. A model can be removed from this list by clicking

on next to the CellML model name.

You can also access models from the left hand panel in Fig. 2.1(a). If this panel is not currently visible, use
‘CTRL-spacebar’ to make it reappear. Models can then be accessed from any one of the three subdivisions of
this panel – File Browser, Physiome Model Repository or File Organiser. For a file under File Browser or File
Organiser, either double-click it or ‘drag&drop’ it over the central workspace to open that model. Clicking
on a model in the Physiome Model Repository (PMR) (e.g. Chen, Popel, 2007) opens a new browser window
with that model (PMR is covered in more detail in Section 13). You can either load this model directly into
OpenCOR or create an identical copy (clone) of the model in your local directory. Note that PMR contains
workspaces and exposures. Workspaces are online environments for the collaborative development of models
(e.g. by geographically dispersed groups) and can have password protected access. Exposures are workspaces
that are exposed for public view and mostly contain models from peer-reviewed journal publications. There are
about 600 exposures based on journal papers and covering many areas of cell processes and other ODE/algebraic
models, but these are currently being supplemented with reusable protein-based models – see discussion in a
Section 13.

To load a model directly into OpenCOR, click on the right-most of the two buttons in Fig. 4.1 - this lists the
CellML models in that exposure - and then click on the model you want. Clicking on the left hand button copies
the PMR workspace to a local directory that you specify. This is useful if you want to use that model as a template
for a new one you are creating.

13

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 4.1: The Physiome Model Repository (PMR) window listing all PMR models. These can be opened from
within OpenCOR using the two buttons to the right of a model, as explained below.

In the PMR window (Fig. 4.1) the buttons on the right-hand side [1] lists all the CellML files for this model. Click-
ing on one of those [2] uploads the model into OpenCOR. The left-hand buttons [3] copies the PMR workspace
to a local directory.

14 Chapter 4. Open an existing CellML file from a local directory or the Physiome Model
Repository

CHAPTER

FIVE

A SIMPLE FIRST ORDER ODE

Fig. 5.1: Solution of 1st order equation.

The simplest example of a first order ODE is

dy
dt

= −𝑎𝑦 + 𝑏

with the solution

𝑦 (𝑡) =
𝑏

𝑎
+

(︂
𝑦 (0) − 𝑏

𝑎

)︂
.𝑒−𝑎𝑡,

where 𝑦 (0) or 𝑦0, the value of 𝑦 (𝑡) at 𝑡 = 0, is the
initial condition. The final steady state solution as 𝑡 →
∞ is 𝑦 (𝑡|∞) = 𝑦∞ = 𝑏

𝑎 (see Figure 6). Note that 𝑡 =
𝜏 = 1

𝑎 is called the time constant of the exponential
decay, and that

𝑦 (𝜏) =
𝑏

𝑎
+

(︂
𝑦 (0) − 𝑏

𝑎

)︂
.𝑒−1.

At 𝑡 = 𝜏 , 𝑦 (𝑡) has therefore fallen to 1
𝑒 (or about 37%) of the difference between the initial (𝑦 (0)) and final

steady state (𝑦 (∞)) values1.

Choosing parameters 𝑎 = 𝜏 = 1; 𝑏 = 2 and 𝑦 (0) = 5, the CellML Text for this model is

def model first_order_model as
def comp main as

var t: dimensionless {init: 0};
var y: dimensionless {init: 5};
var a: dimensionless {init: 1};
var b: dimensionless {init: 2};
ode(y,t)=-a*y+b;

enddef;
enddef;

The solution by OpenCOR is shown in Fig. 5.2(a) for these parameters (a decaying exponential) and in Fig. 5.2(b)
for parameters 𝑎 = 1; 𝑏 = 5 and 𝑦 (0) = 2 (an inverted decaying exponential). Note the simulation panel with
Ending point=10, Point interval=0.1. Try putting 𝑎 = −1.

1 It is often convenient to write a first order equation as 𝜏 dy
dt = −𝑦 + 𝑦∞, so that its solution is expressed in terms of time constant 𝜏 ,

initial condition 𝑦0 and steady state solution 𝑦∞ as: 𝑦 (𝑡) = 𝑦∞ + (𝑦0 − 𝑦∞) .𝑒−
𝑡
𝜏 .

15

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 5.2: OpenCOR output 𝑦 (𝑡) for the simple ODE model with parameters (a) 𝑎 = 1; 𝑏 = 2 and 𝑦 (0) = 5
(OpenCOR link), and (b) 𝑎 = 1; 𝑏 = 5 and 𝑦 (0) = 2. The red arrow indicates the point at which the trace reaches
the time constant 𝜏 (𝑒−1 or ≈ 37% of the difference between the initial and final solution values). The black
arrows indicate the initial and final (steady state) solutions. Note that the parameters on the left have been reset to
their initial values for this figure - normally they would be at their final solution values.

These two solutions have the same exponential time constant (𝜏 = 1
𝑎 = 1) but different initial and final (steady

state) values.

The exponential decay curve shown on the left in Fig. 5.2 is a common feature of many models and in the case of
radioactive decay (for example) is a statement that the rate of decay (− dy

dt) is proportional to the current amount
of substance (𝑦). This is illustrated on the NZ$100 note (should you be lucky enough to possess one), shown in
Figure 8.

Fig. 5.3: The exponential curve representing the naturally occurring radioactive decay explained by the New
Zealand Noble laureate Sir Ernest Rutherford - best known for ‘splitting the atom’. This may be the only bank
note depicting the mathematical solution of a first order ODE.

16 Chapter 5. A simple first order ODE

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/60ac9389285471a704f2f4be6e1a8ba5cbf45d1a/Firstorder.sedml

CHAPTER

SIX

THE LORENZ ATTRACTOR

An example of a third order ODE system (i.e. three 1st order equations) is the Lorenz equations1.

Fig. 6.1: CellML Text code for the Lorenz equations.

This system has three equations:

dx
dt

= 𝜎 (𝑦 − 𝑥)

dy
dt

= 𝑥 (𝜌− 𝑧) − 𝑦

dz
dt

= 𝑥𝑦 − 𝛽𝑧

where 𝜎, 𝜌 and 𝛽 are parameters.

The CellML Text code entered for
these equations is shown in Fig. 6.1
with parameters

𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3 =
2.66667

and initial conditions

𝑥 (0) = 𝑦 (0) = 𝑧 (0) =1.

Solutions for 𝑥 (𝑡), 𝑦 (𝑥) and 𝑧 (𝑥),
corresponding to the time integra-
tion parameters shown on the LHS,
are shown in Fig. 6.2. Note that this
system exhibits ‘chaotic dynamics’
with small changes in the initial
conditions leading to quite different
solution paths.

This example illustrates the value
of OpenCOR’s ability to plot vari-
ables as they are computed. Use
the Simulation Delay wheel to slow
down the plotting by a factor of
about 5-10,000 - in order to fol-
low the solution as it spirals in
ever widening trajectories around
the left hand wing of the attractor before coming close to the origin that then sends it off to the right hand wing of
the attractor.

1 http://en.wikipedia.org/wiki/Lorenz_system

17

http://en.wikipedia.org/wiki/Lorenz_system

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 6.2: Solutions of the Lorenz equations. Note that the parameters on the left have been reset to their initial
values for this figure – normally they would be at their final solution values.

Solutions to the Lorenz equations are organised by the 2D ‘Lorenz manifold’. This surface has a very beautiful
shape and has become an art form - even rendered in crochet!2 (See Fig. 6.3).

Fig. 6.3: The crocheted Lorenz manifold made by Professors Hinke Osinga and Bernd Krauskopf of the Mathe-
matics Department at the University of Auckland, New Zealand.

Note: The simulation presented in Fig. 6.2 can be loaded direction into OpenCOR using this link.

6.1 Exercise for the reader

Another example of intriguing and unpredictable behaviour from a simple deterministic ODE system is the ‘blue
sky catastrophe’ model [JH02] defined by the following equations:

dx
dt

= 𝑦

dy
dt

= 𝑥− 𝑥3 − 0.25𝑦 + 𝐴 sin 𝑡

2 http://www.math.auckland.ac.nz/~hinke/crochet/

18 Chapter 6. The Lorenz attractor

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/f0e63e292ebb1d6798da08914b4217aec434af96/lorenz.sedml
http://www.math.auckland.ac.nz/~hinke/crochet/

OpenCOR Tutorial, Release 0.18.0-alpha

with parameter 𝐴 = 0.2645 and initial conditions 𝑥 (0) = 0.9, 𝑦 (0) = 0.4. Run to 𝑡 = 500 with ∆𝑡 = 0.01
and plot 𝑥 (𝑡) and 𝑦 (𝑥) (OpenCOR link). Also try with 𝐴 = 0.265 to see how sensitive the solution is to small
changes in parameter values.

6.1. Exercise for the reader 19

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/8b61448c7ea1b1aedc16931d97a3036fe298b0a3/BlueSkyCatastrophy.sedml

OpenCOR Tutorial, Release 0.18.0-alpha

20 Chapter 6. The Lorenz attractor

CHAPTER

SEVEN

A MODEL OF ION CHANNEL GATING AND CURRENT:
INTRODUCING CELLML UNITS

A good example of a model based on a first order equation is the one used by Hodgkin and Huxley [AAF52]
to describe the gating behaviour of an ion channel (see also next three sections). Before we describe the gating
behaviour of an ion channel, however, we need to explain the concepts of the ‘Nernst potential’ and channel
conductance.

An ion channel is a protein or protein complex embedded in the bilipid membrane surround-
ing a cell and containing a pore through which an ion 𝑌 + (or 𝑌 −) can pass when the chan-
nel is open. If the concentration of this ion is [𝑌 +]𝑜 outside the cell and [𝑌 +]𝑖 inside
the cell, the force driving an ion through the pore is calculated from the change in entropy.

Fig. 7.1: Distribution of microstates in a system [J97].
The 16 particles in a confined region (left) have only one
possible arrangement (W = 1) and therefore zero entropy
(𝑘𝐵 lnW = 0). When the barrier is removed and the num-
ber of possible locations for each particle increases 4x
(right), the number of possible arrangements for the 16
particles increases by 416 and the increase in entropy is
therefore 𝑙𝑛(416) or 16𝑙𝑛4. The thermal energy (temper-
ature) of the previously confined particles on the left has
been redistributed in space to achieve a more probable
(higher entropy) state. If we now added more particles
to the container on the right, the concentration would in-
crease and the entropy would decrease.

Entropy 𝑆 (𝐽.𝐾−1) is a measure of the number of mi-
crostates available to a system, as defined by Boltz-
mann’s equation 𝑆 = 𝑘𝐵 lnW, where 𝑊 is the number
of ways of arranging a given distribution of microstates
of a system and 𝑘𝐵 is Boltzmann’s constant1. The driv-
ing force for ion movement is the dispersal of energy
into a more probable distribution (see Fig. 7.1; cf. the
second law of thermodynamics2).

The energy change ∆𝑞 associated with this change of
entropy ∆𝑆 at temperature 𝑇 is ∆𝑞 = 𝑇∆𝑆 (J).

For a given volume of fluid the number of microstates
𝑊 available to a solute (and hence the entropy of the
solute) at a high concentration is less than that for a
low concentration3. The energy difference driving ion
movement from a high ion concentration [𝑌 +]𝑖 (lower
entropy) to a lower ion concentration [𝑌 +]𝑜 (higher
entropy) is therefore

∆𝑞 = 𝑇∆𝑆 = 𝑘𝐵𝑇 (ln [𝑌 +]𝑜 − ln [𝑌 +]𝑖) =

𝑘𝐵𝑇 ln
[𝑌 +]

𝑜

[𝑌 +]𝑖
(𝐽.𝑖𝑜𝑛−1)

or

∆𝑄 = 𝑅𝑇 ln
[𝑌 +]

𝑜

[𝑌 +]𝑖
(𝐽.𝑚𝑜𝑙−1).

𝑅 = 𝑘𝐵𝑁𝐴 ≈
1.34𝑥10−23(𝐽.𝐾−1)x6.02𝑥1023(𝑚𝑜𝑙−1) ≈

1 The Brownian motion of individual molecules has energy 𝑘𝐵𝑇 (J), where the Boltzmann constant 𝑘𝐵 is approximately 1.34𝑥10−23

(𝐽.𝐾−1). At 25°C, or 298K, 𝑘𝐵𝑇 = 4.10−21 (J) is the minimum amount of energy to contain a ‘bit’ of information at that temperature.
2 The first law of thermodynamics states that energy is conserved, and the second law (that natural processes are accompanied by an

increase in entropy of the universe) deals with the distribution of energy in space.
3 At infinitely high concentration the specified volume is jammed packed with solute and the entropy is zero.

21

OpenCOR Tutorial, Release 0.18.0-alpha

8.4(𝐽.𝑚𝑜𝑙−1𝐾−1) is the
‘universal gas constant’4. At 25°C (298K), RT ≈ 2.5𝑘𝐽.𝑚𝑜𝑙−1.

Fig. 7.2: The balance between entropic and
electrostatic forces determines the Nernst po-
tential.

Every positively charged ion that crosses the membrane raises
the potential difference and produces an electrostatic driving
force that opposes the entropic force (see Fig. 7.2). To move
an electron of charge e (≈ 1.6𝑥10−19 C) through a voltage
change of ∆𝜑 (V) requires energy 𝑒∆𝜑 (J) and therefore the
energy needed to move an ion 𝑌 + of valence z=1 (the number
of charges per ion) through a voltage change of ∆𝜑 is ze∆𝜑
(𝐽.𝑖𝑜𝑛−1) or ze𝑁𝐴∆𝜑 (𝐽.𝑚𝑜𝑙−1). Using Faraday’s constant
𝐹 = 𝑒𝑁𝐴, where 𝐹 ≈ 0.96𝑥105𝐶.𝑚𝑜𝑙−1, the change in en-
ergy density at the macroscopic scale is zF∆𝜑 (𝐽.𝑚𝑜𝑙−1).

No further movement of ions takes place when the force for en-
tropy driven ion movement exactly equals the opposing electrostatic driving force associated with charge move-
ment:

zF∆𝜑 = RT ln
[𝑌 +]

𝑜

[𝑌 +]𝑖
(𝐽.𝑚𝑜𝑙−1) or ∆𝜑 = 𝐸𝑌 = RT

zF ln
[𝑌 +]

𝑜

[𝑌 +]𝑖
(𝐽.𝐶−1 or V)

where 𝐸𝑌 is the ‘equilibrium’ or ‘Nernst’ potential for 𝑌 +. At 25°C (298K), RT
𝐹 = 2.5𝑥103

0.96𝑥105 (𝐽.𝐶−1) ≈ 25𝑚𝑉 .

Fig. 7.3: Open channel linear current-voltage
relation

For an open channel the electrochemical current flow is driven
by the open channel conductance 𝑔𝑌 times the difference be-
tween the transmembrane voltage 𝑉 and the Nernst potential
for that ion:

𝑖𝑌 =𝑔𝑌 (𝑉 − 𝐸𝑌).

This defines a linear current-voltage relation (‘Ohms
law’) as shown in Fig. 7.3. The gates to be dis-
cussed below modify this open channel conductance.

Fig. 7.4: Ion channel gating kinetics. y is the
fraction of gates in the open state. _y and _y
are the rate constants for opening and closing,
respectively.

Fig. 7.5: Transient behaviour for one gate (left)
and gates in series (right). Note that the right
hand graph has an initial S-shaped increase, re-
flecting the multiple gates in series.

To describe the time dependent transition between the closed
and open states of the channel, Hodgkin and Huxley introduced
the idea of channel gates that control the passage of ions through
a membrane ion channel. If the fraction of gates that are open
is y, the fraction of gates that are closed is 1 − 𝑦, and a first
order ODE can be used to describe the transition between the
two states (see Fig. 7.4):
dy
dt = 𝛼𝑦 (1 − 𝑦) − 𝛽𝑦 .y

where 𝛼𝑦is the opening rate and 𝛽𝑦 is the closing rate.

The solution to this ODE is

𝑦 =
𝛼𝑦

𝛼𝑦+𝛽𝑦
+ 𝐴𝑒−(𝛼𝑦+𝛽𝑦)𝑡

4 𝑁𝐴 is Avogadro’s number (6.023𝑥1023) and is the scaling factor between molecular and macroscopic processes. Boltzmann’s constant
𝑘𝐵 and electron charge e operate at the atomic/molecular scale. Their effect at the physiological scale is via the universal gas constant
𝑅 = 𝑘𝐵𝑁𝐴 and Faraday’s constant 𝐹 = 𝑒𝑁𝐴.

22 Chapter 7. A model of ion channel gating and current: Introducing CellML units

OpenCOR Tutorial, Release 0.18.0-alpha

The constant 𝐴 can be interpreted as 𝐴 = 𝑦 (0) − 𝛼𝑦

𝛼𝑦+𝛽𝑦
as in

the previous example and, with 𝑦 (0) = 0 (i.e. all gates initially
shut), the solution looks like Fig. 7.5(a).

The experimental data obtained by Hodgkin and Huxley for the
squid axon, however, indicated that the initial current flow began
more slowly (Fig. 7.5(b)) and they modelled this by assuming that the ion channel had 𝛾 gates in series so that
conduction would only occur when all gates were at least partially open. Since 𝑦 is the probability of a gate being
open, 𝑦𝛾 is the probability of all 𝛾 gates being open (since they are assumed to be independent) and the current
through the channel is

𝑖𝑌 = 𝑖𝑌 𝑦
𝛾 = 𝑦𝛾𝑔𝑌 (𝑉 − 𝐸𝑌)

where 𝑖𝑌 = 𝑔𝑌 (𝑉 − 𝐸𝑌) is the steady state current through the open gate.

We can represent this in OpenCOR with a simple extension of the first order ODE model, but in developing this
model we will also demonstrate the way in which CellML deals with units.

Note that the decision to deal with units in CellML, rather than just ignoring them or insisting that all equations
are represented in dimensionless form, was made in order to be able to check the physical consistency of all terms
in each equation5.

There are seven base physical quantities defined by the International d’Unités (SI)6. These are (with their SI units):

• length (meter or m)

• time (second or s)

• amount of substance (mole)

• temperature (K)

• mass (kilogram or kg)

• current (amp or A)

• luminous intensity (candela).

All other units are derived from these seven. Additional derived units that CellML defines intrinsically (with
their dependence on previously defined units) are: Hz (𝑠−1); Newton, N (𝑘𝑔.𝑚.𝑠−1); Joule, J (𝑁.𝑚); Pascal,
Pa (𝑁.𝑚−2); Watt, W (𝐽.𝑠−1); Volt, V (𝑊.𝐴−1); Siemen, S (𝐴.𝑉 −1); Ohm, Ω (𝑉.𝐴−1); Coulomb, C (𝑠.𝐴);
Farad, F (𝐶.𝑉 −1); Weber, Wb (𝑉.𝑠); and Henry, H (𝑊𝑏.𝐴−1). Multiples and fractions of these are defined as
follows:

Prefix deca hecto kilo mega giga tera peta exa zetta yotta
Multi-
ples

Sym-
bol

da h k M G T P E Z Y

Factor 100 101 102 103 106 109 1012 1015 1018 1021 1024

Prefix deci centi milli mi-
cro

nano pico femto atto zepto yocto

Frac-
tions

Sym-
bol

d c m n p f a z y

Factor 100 10−1 10−2 10−3 10−6 10−9 10−12 10−15 10−18 10−21 10−24

Units for this model, with multiples and fractions, are illustrated in the following CellML Text code:

1 def model first_order_model as
2 def unit millisec as
3 unit second {pref: milli};
4 enddef;

(continues on next page)

5 It is well accepted in engineering analysis that thinking about and dealing with units is a key aspect of modelling. Taking the ratio of
dimensionally consistent terms provides non-dimensional numbers which can be used to decide when a term in an equation can be omitted in
the interests of modelling simplicity. We investigate this idea further in a later section.

6 http://en.wikipedia.org/wiki/International_System_of_Units

23

http://en.wikipedia.org/wiki/International_System_of_Units

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

5 def unit per_millisec as
6 unit second {pref: milli, expo: -1};
7 enddef;
8 def unit millivolt as
9 unit volt {pref: milli};

10 enddef;
11 def unit microA_per_cm2 as
12 unit ampere {pref: micro};
13 unit metre {pref: centi, expo: -2};
14 enddef;
15 def unit milliS_per_cm2 as
16 unit siemens {pref: milli};
17 unit metre {pref: centi, expo: -2};
18 enddef;
19 def comp ion_channel as
20 var V: millivolt {init: 0};
21 var t: millisec {init: 0};
22 var y: dimensionless {init: 0};
23 var E_y: millivolt {init: -85};
24 var i_y: microA_per_cm2;
25 var g_y: milliS_per_cm2 {init: 36};
26 var gamma: dimensionless {init: 4};
27 var alpha_y: per_millisec {init: 1};
28 var beta_y: per_millisec {init: 2};
29 ode(y, t) = alpha_y*(1{dimensionless}-y)-beta_y*y;
30 i_y = g_y*pow(y, gamma)*(V-E_y);
31 enddef;
32 enddef;

Line 2: Define units for time as millisecs
Line 5: Define per_millisec units
Line 8: Define units for voltage as millivolts
Line 11: Define units for current as microAmps per cm2

Line 15: Define units for conductance as milliSiemens per cm2

Lines 20-28: Define units and initial conditions for variables
Line 29: Define ODE for gating variable y
Line 30: Define channel current

The solution of these equations for the parameters indicated above is illustrated in Fig. 7.6.

24 Chapter 7. A model of ion channel gating and current: Introducing CellML units

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 7.6: The behaviour of an ion channel with 𝛾 = 4 gates transitioning from the closed to the open state at a
membrane voltage 𝑉 = 0 (OpenCOR link). The opening and closing rate constants are 𝛼𝑦 = 1 ms-1 and 𝛽𝑦 = 2
ms-1. The ion channel has an open conductance of 𝑔𝑌 = 36 mS.cm-2 and an equilibrium potential of 𝐸𝑌 = −85
mV. The upper transient is the response 𝑦 (𝑡) for each gate and the lower trace is the current through the channel.
Note the slow start to the current trace in comparison with the single gate transient 𝑦 (𝑡).

The model of a gated ion channel presented here is used in the next two sections for the neural potassium and
sodium channels and then in Section 11 for cardiac ion channels. The gates make the channel conductance time
dependent and, as we will see in the next section, the experimentally observed voltage dependence of the gating
rate constants 𝛼𝑦 and 𝛽𝑦 means that the channel conductance (including the open channel conductance) is voltage
dependent. For a partially open channel (𝑦 < 1), the steady state conductance is (𝑦∞)

𝛾
.𝑔𝑌 , where 𝑦∞ =

𝛼𝑦

𝛼𝑦+𝛽𝑦
.

Moreover the gating time constants 𝜏 = 1
𝛼𝑦+𝛽𝑦

are therefore also voltage dependent. Both of these voltage
dependent factors of ion channel gating are important in explaining channel properties, as we show now for the
neural potassium and sodium ion channels.

25

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/c4b85039efecd603ee0b9d4ad46e3015b91fdef7/SimpleFirstOrderEqn.sedml

OpenCOR Tutorial, Release 0.18.0-alpha

26 Chapter 7. A model of ion channel gating and current: Introducing CellML units

CHAPTER

EIGHT

A MODEL OF THE POTASSIUM CHANNEL: INTRODUCING
CELLML COMPONENTS AND CONNECTIONS

We now deal specifically with the application of the previous model to the Hodgkin and Huxley (HH) potassium
channel. Following the convention introduced by Hodgkin and Huxley, the gating variable for the potassium
channel is 𝑛 and the number of gates in series is 𝛾 = 4, therefore

𝑖𝐾 = ¯𝑖𝐾𝑛4 = 𝑛4𝑔𝐾 (𝑉 − 𝐸𝐾)

where 𝑔𝐾 = 36mS.cm−2, and with intra- and extra-cellular concentrations [𝐾+]𝑖 = 90mM and [𝐾+]𝑜 = 3mM,
respectively, the Nernst potential for the potassium channel (𝑧 = 1 since one +ve charge on 𝐾+) is

𝐸𝑘 = RT
zF 𝑙𝑛

[𝐾+]
𝑜

[𝐾+]𝑖
= 25 𝑙𝑛 3

90 = −85mV.

As noted above, this is called the equilibrium potential since it is the potential across the cell mem-
brane when the channel is open but no current is flowing because the electrostatic driving force
from the potential (voltage) difference between internal and external ion charges is exactly matched by
the entropic driving force from the ion concentration difference. 𝑛4𝑔𝐾 is the channel conductance.

Fig. 8.1: Voltage dependence of rate constants 𝛼𝑛 and
𝛽𝑛 (ms−1), time constant 𝜏𝑛 (ms) and relative conduc-
tance 𝑔𝑆𝑆

𝑔𝑌
.

The gating kinetics are described (as before) by
dn
dt = 𝛼𝑛 (1 − 𝑛) − 𝛽𝑛.n

with time constant 𝜏𝑛 = 1
𝛼𝑛+𝛽𝑛

(see A simple first
order ODE).

The main difference from the gating model in our pre-
vious example is that Hodgkin and Huxley found it
necessary to make the rate constants functions of the
membrane potential 𝑉 (see Fig. 8.1) as follows1:

𝛼𝑛 = −0.01(𝑉+65)

𝑒
−(𝑉 +65)

10 −1
; 𝛽𝑛 = 0.125𝑒

−(𝑉 +75)
80 .

Note that under steady state conditions when 𝑡 → ∞
and
dn
dt → 0, 𝑛|𝑡=∞ = 𝑛∞ = 𝛼𝑛

𝛼𝑛+𝛽𝑛
.

The voltage dependence of the steady state channel
conductance is then

𝑔SS =
(︁

𝛼𝑛

𝛼𝑛+𝛽𝑛

)︁4

.𝑔𝑌 .

(see Fig. 8.1). The steady state current-voltage rela-
tion for the channel is illustrated in Fig. 8.2.

1 The original expression in the HH paper used 𝛼𝑛 =
0.01(𝑣+10)

𝑒
(𝑣+10)

10 −1

and 𝛽𝑛 = 0.125𝑒
𝑣
80 , where 𝑣 is defined relative to the resting

potential (−75mV) with +ve corresponding to +ve inward current and 𝑣 = −(𝑉 + 75).

27

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 8.2: The steady-state current-voltage relation for the
potassium channel.

These equations are captured with OpenCOR
CellML Text view (together with the previ-
ous unit definitions) below. But first we need
to explain some further CellML concepts.

We introduced CellML units above. We now need
to introduce three more CellML constructs: compo-
nents, connections (mappings between components)
and groups. For completeness we also show one other
construct in Fig. 8.3, imports, that will be used later
in A model of the nerve action potential: Introducing
CellML imports.

Defining components serves two purposes: it pre-
serves a modular structure for CellML models, and
allows these component modules to be imported into
other models, as we will illustrate later [DPPJ03]. For the potassium channel model we define components repre-
senting (i) the environment, (ii) the potassium channel conductivity, and (iii) the dynamics of the n-gate.

Fig. 8.3: Key entities in a CellML model.

Since certain variables (t, V and n) are shared between
components, we need to also define the component
maps as indicated in the CellML Text view below.

The CellML Text code for the potassium ion channel
model is as follows2:

Potassium_ion_channel.cellml

1 def model potassium_ion_channel as
2 def unit millisec as
3 unit second {pref: milli};
4 enddef;
5 def unit per_millisec as
6

→˓ unit second {pref: milli, expo: -1};
7 enddef;
8 def unit millivolt as
9 unit volt {pref: milli};

10 enddef;
11 def unit per_millivolt as
12 unit millivolt {expo: -1};
13 enddef;
14 def unit per_millivolt_millisec as
15 unit per_millivolt;
16 unit per_millisec;
17 enddef;
18 def unit microA_per_cm2 as
19 unit ampere {pref: micro};
20

→˓ unit metre {pref: centi, expo: -2};
21 enddef;
22 def unit milliS_per_cm2 as
23 unit siemens {pref: milli};
24

→˓ unit metre {pref: centi, expo: -2};
25 enddef;
26 def unit mM as
27 unit mole {pref: milli};
28 enddef;
29 def comp environment as

(continues on next page)

2 From here on we use a coloured background to identify code blocks that relate to a particular CellML construct: units, components,
mappings and encapsulation groups and later imports.

28 Chapter 8. A model of the potassium channel: Introducing CellML components and
connections

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

30 var V: millivolt { pub: out};
31 var t: millisec {pub: out};
32 V = sel
33 case (t > 5

→˓{millisec}) and (t < 15 {millisec}):
34 -85.0 {millivolt};
35 otherwise:
36 0.0 {millivolt};
37 endsel;
38 enddef;
39 def group as encapsulation for
40 comp potassium_channel incl
41 comp potassium_channel_n_gate;
42 endcomp;
43 enddef;
44 def comp potassium_channel as
45 var

→˓V: millivolt {pub: in , priv: out};
46

→˓var t: millisec {pub: in, priv: out};
47 var n: dimensionless {priv: in};
48

→˓ var i_K: microA_per_cm2 {pub: out};
49

→˓ var g_K: milliS_per_cm2 {init: 36};
50 var Ko: mM {init: 3};
51 var Ki: mM {init: 90};
52 var RTF: millivolt {init: 25};
53 var E_K: millivolt;
54 var K_conductance:

→˓milliS_per_cm2 {pub: out};
55 E_K=RTF*ln(Ko/Ki);
56 K_conductance

→˓= g_K*pow(n, 4{dimensionless});
57 i_K = K_conductance*(V-E_K);
58 enddef;
59 def comp potassium_channel_n_gate as
60 var V: millivolt {pub: in};
61 var t: millisec {pub: in};
62 var n: dimensionless

→˓{init: 0.325, pub: out};
63 var alpha_n: per_millisec;
64 var beta_n: per_millisec;
65 alpha_n = 0.01{per_

→˓millivolt_millisec}*(V+10{millivolt})
66 /(exp((V+10{millivolt}

→˓)/10{millivolt})-1{dimensionless});
67 beta_n = 0.125

→˓{per_millisec}*exp(V/80{millivolt});
68 ode(n, t) = alpha_

→˓n*(1{dimensionless}-n)-beta_n*n;
69 enddef;
70 def map between

→˓environment and potassium_channel for
71 vars V and V;
72 vars t and t;
73 enddef;
74

→˓def map between potassium_channel and
75 potassium_channel_n_gate for
76 vars V and V;

(continues on next page)

29

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

77 vars t and t;
78 vars n and n;
79 enddef;
80 enddef;

Lines 2-28: Define units.
Lines 29-38: Define component ‘environment’.
Lines 32-37: Define voltage step.
Lines 39-43: Define encapsulation of ‘n_gate’.
Lines
44-58: Define component ‘potassium_channel’.
Lines 59-69:
Define component ‘potassium_channel_n_gate’.
Lines
70-79: Define mappings between components for
variables that are shared between these components.

Note that several other features have been added:

• the event control select case which indicates
that the voltage is specified to jump from 0 mV
to -85 mV at t = 5 ms then back to 0 mV at
t = 15 ms. This is only used here in order
to test the K channel model; when the potas-
sium_channel component is later imported into
a neuron model, the environment component
is not imported.

• the use of encapsulation to embed the potas-
sium_channel_n_gate inside the potas-
sium_channel. This avoids the need to
establish mappings from environment to
potassium_channel_n_gate since the gate
component is entirely within the channel
component.

• the use of {𝑝𝑢𝑏 : 𝑖𝑛} and {𝑝𝑢𝑏 : 𝑜𝑢𝑡} to indi-
cate which variables are either supplied as in-
puts to a component or produced as outputs
from a component3. Any variables not labelled
as in or out are local variables or parameters
defined and used only within that component.
Public (and private) interfaces are discussed in
more detail in the next section.

We now use OpenCOR, with Ending point 40 and Point interval 0.1, to solve the equations for the potassium
channel under a voltage step condition in which the membrane voltage is clamped initially at 0mV and then
stepped down to -85mV for 10ms before being returned to 0mV. At 0mV, the steady state value of the n gate is
𝑛∞ = 𝛼𝑛

𝛼𝑛+𝛽𝑛
= 0.324 and, at -85mV, 𝑛∞ = 0.945.

The voltage traces are shown at the top of Figure 21. The n-gate response, shown next, is to open further from its
partially open value of 𝑛 =0.324 at 0mV and then plateau at an almost fully open state of 𝑛 =0.945 at the Nernst
potential -85mV before closing again as the voltage is stepped back to 0mV. Note that the gate opening behaviour
(set by the voltage dependence of the 𝛼𝑛 opening rate constant) is faster than the closing behaviour (set by the

3 Note that a later version of CellML will remove the terms in and out since it is now thought that the direction of information flow should
not be constrained.

30 Chapter 8. A model of the potassium channel: Introducing CellML components and
connections

OpenCOR Tutorial, Release 0.18.0-alpha

voltage dependence of the 𝛽𝑛 closing rate constant). The channel conductance (= 𝑛4𝑔𝐾) is shown next – note
the initial s-shaped conductance increase caused by the 𝑛4 (four gates in series) effect on conductance. Finally
the channel current 𝑖𝐾 = conductance x (𝑉 − 𝐸𝐾) is shown at the bottom. Because the voltage is clamped at
the Nernst potential (-85mV) during the period when the gate is opening, there is no current flow, but when the
voltage is stepped back to 0mV, the open gates begin to close and the conductance declines but now there is a
voltage gradient to drive an outward (positive) current flow through the partially open channel – albeit brief since
the channel is closing.

Fig. 8.4: Kinetics of the potassium channel gates for a voltage step from 0mV to -85mV (OpenCOR link). The
voltage clamp step is shown at the top, then the n gate first order response, then the channel conductance, then the
channel current. Notice how the conductance is slightly slower to turn on (due to the four gates in series) but fast
to inactivate. Current only flows when there is a non-zero conductance and a non-zero voltage gradient. This is
called the ‘tail current’.

Note that the CellML Text code above includes the Nernst equation with its dependence on the concentrations
[𝐾+]𝑖= 90mM and [𝐾+]𝑜= 3mM. Try raising the external potassium concentration to [𝐾+]𝑜= 10mM – you will
then see the Nernst potential increase from -85mV to -55mV and a negative (inward) current flowing during the
period when the membrane voltage is clamped to -85mV. The cell is now in a ‘hyperpolarised’ state because the
potential is less than the equilibrium potential.

Note that you can change a model parameter such as [𝐾+]𝑜 either by changing the value in the left hand Param-
eters window (which leaves the file unchanged) or by editing the CellML Text code (which does change the file
when you save from CellML Text view – which you have to do to see the effect of that change.

This potassium channel model will be used later, along with a sodium channel model and a leakage channel
model, to form the Hodgkin-Huxley neuron model, where the membrane ion channel current flows are coupled to
the equations governing current flow along the axon to generate an action potential.

31

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/e3ef4cf57b9be0b9f5ccb72e98dac46f2381add5/potassium_ion_channel.sedml

OpenCOR Tutorial, Release 0.18.0-alpha

32 Chapter 8. A model of the potassium channel: Introducing CellML components and
connections

CHAPTER

NINE

A MODEL OF THE SODIUM CHANNEL: INTRODUCING CELLML
ENCAPSULATION AND INTERFACES

The HH sodium channel has two types of gate, an 𝑚 gate (of which there are 3) that is initially closed (𝑚 = 0)
before activating and inactivating back to the closed state, and an ℎ gate that is initially open (ℎ = 1) before
activating and inactivating back to the open state. The short period when both types of gate are open allows a brief
window current to pass through the channel. Therefore,

𝑖Na = �̄�Na𝑚
3ℎ = 𝑚3h.𝑔Na (𝑉 − 𝐸Na)

where 𝑔Na = 120 mS.cm-2, and with
[︀
Na+

]︀
𝑖
= 30mM and

[︀
Na+

]︀
𝑜
= 140mM, the Nernst potential for the sodium

channel (z=1) is

𝐸Na =
RT
zF

𝑙𝑛

[︀
Na+

]︀
𝑜[︀

Na+
]︀
𝑖

= 25 𝑙𝑛
140

30
= 35mV.

The gating kinetics are described by

dm
dt

= 𝛼𝑚 (1 −𝑚) − 𝛽𝑚.m;
dh
dt

= 𝛼ℎ (1 − ℎ) − 𝛽ℎ.h

where the voltage dependence of these four rate constants is determined experimentally to be1

𝛼𝑚 =
−0.1 (𝑉 + 50)

𝑒
−(𝑉 +50)

10 − 1
;𝛽𝑚 = 4𝑒

−(𝑉 +75)
18 ;𝛼ℎ = 0.07𝑒

−(𝑉 +75)
20 ;𝛽ℎ =

1

𝑒
−(𝑉 +45)

10 + 1
.

Before we construct a CellML model of the sodium channel, we first introduce some further CellML concepts that
help deal with the complexity of biological models: first the use of encapsulation groups and public and private
interfaces to control the visibility of information in modular CellML components. To understand encapsulation,
it is useful to use the terms ‘parent’, ‘child’ and ‘sibling’.

def group as encapsulation for
comp sodium_channel incl

comp sodium_channel_m_gate;
comp sodium_channel_h_gate;

endcomp;
enddef;

We define the CellML components sodium_channel_m_gate and sodium_channel_h_gate below. Each of these
components has its own equations (voltage-dependent gates and first order gate kinetics) but they are both parts of
one protein – the sodium channel – and it is useful to group them into one sodium_channel component as shown
above:

We can then talk about the sodium channel as the parent of two children: the m gate and the h gate, which are
therefore siblings. A private interface allows a parent to talk to its children and a public interface allows siblings
to talk among themselves and to their parents (see Fig. 9.1).

1 The HH paper used 𝛼𝑚 =
0.1(𝑣+25)

𝑒
(𝑣+25)

10 −1

; 𝛽𝑚 = 4𝑒
𝑣
18 ; 𝛼ℎ = 0.07𝑒

𝑣
20 ; 𝛽ℎ = 1

𝑒
(𝑣+30)

10 +1

;.

33

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 9.1: Children talk to each other as siblings, and to their parents, via public interfaces. But the outside world
can only talk to children through their parents via a private interface. Note that the siblings m_gate and h_gate
could talk via a public interface but only if a mapping is established between them (not needed here).

The OpenCOR CellML Text for the HH sodium ion channel is given below.

Sodium_ion_channel.cellml

def model sodium_ion_channel as
def unit millisec as

unit second {pref: milli};
enddef;

def unit per_millisec as
unit second {pref: milli, expo: -1};

enddef;

def unit millivolt as
unit volt {pref: milli};

enddef;

def unit per_millivolt as
unit millivolt {expo: -1};

enddef;

def unit per_millivolt_millisec as
unit per_millivolt;
unit per_millisec;

enddef;

def unit microA_per_cm2 as
unit ampere {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;

(continues on next page)

34Chapter 9. A model of the sodium channel: Introducing CellML encapsulation and interfaces

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

def unit milliS_per_cm2 as
unit siemens {pref: milli};
unit metre {pref: centi, expo: -2};

enddef;

def comp environment as
var V: millivolt {pub: out};
var t: millisec {pub: out};

V = sel
case (t > 5{millisec}) and (t < 15{millisec}):

0.0{millivolt};
otherwise:

-85.0{millivolt};
endsel;

enddef;

def group as encapsulation for
comp sodium_channel incl

comp sodium_channel_m_gate;
comp sodium_channel_h_gate;

endcomp;
enddef;

def comp sodium_channel as
var V: millivolt {pub: in, priv: out};
var t: millisec {pub: in, priv: out};
var m: dimensionless {priv: in};
var h: dimensionless {priv: in};
var g_Na: milliS_per_cm2 {init: 120};
var E_Na: millivolt {init: 35};
var Na_conductance: milliS_per_cm2 {pub: out};
var i_Na: microA_per_cm2 {pub: out};

Na_conductance = g_Na*pow(m, 3{dimensionless})*h;
i_Na = Na_conductance*(V-E_Na);

enddef;

def comp sodium_channel_m_gate as
var V: millivolt {pub: in};
var t: millisec {pub: in};
var alpha_m: per_millisec;
var beta_m: per_millisec;
var m: dimensionless {init: 0.05, pub: out};

alpha_m = -0.1{per_millivolt_millisec}*(V+50{millivolt})/(exp(-(V+50
→˓{millivolt})/10{millivolt})-1{dimensionless});

beta_m = 4{per_millisec}*exp(-(V+75{millivolt})/18{millivolt});
ode(m, t) = alpha_m*(1{dimensionless}-m)-beta_m*m;

enddef;

def comp sodium_channel_h_gate as
var V: millivolt {pub: in};
var t: millisec {pub: in};
var alpha_h: per_millisec;
var beta_h: per_millisec;
var h: dimensionless {init: 0.6, pub: out};

alpha_h = 0.07{per_millisec}*exp(-(V+75{millivolt})/20{millivolt});
beta_h = 1{per_millisec}/(exp(-(V+45{millivolt})/10{millivolt})+1

→˓{dimensionless});

(continues on next page)

35

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;
enddef;

def map between sodium_channel and environment for
vars V and V;
vars t and t;

enddef;

def map between sodium_channel and sodium_channel_m_gate for
vars V and V;
vars t and t;
vars m and m;

enddef;

def map between sodium_channel and sodium_channel_h_gate for
vars V and V;
vars t and t;
vars h and h;

enddef;
enddef;

The results of the OpenCOR computation, with Ending point 40 and Point interval 0.1, are shown in Fig. 9.2 with
plots 𝑉 (𝑡), 𝑚 (𝑡), ℎ (𝑡), 𝑔Na (𝑡) and 𝑖Na(𝑡) for voltage steps from (a) -85mV to -20mV, (b) -85mV to 0mV and (c)
-85mV to 20mV. There are several things to note:

i. The kinetics of the m-gate are much faster than the h-gate.

ii. The opening behaviour is faster as the voltage is stepped to higher values since 𝜏 = 1
𝛼𝑛+𝛽𝑛

reduces with
increasing V (see Fig. 8.1).

iii. The sodium channel conductance rises (activates) and then falls (inactivates) under a positive voltage step
from rest since the three m-gates turn on but the h-gate turns off and the conductance is a product of these.
Compare this with the potassium channel conductance shown in Fig. 8.4 which is only reduced back to zero
by stepping the voltage back to its resting value – i.e. deactivating it.

iv. The only time current 𝑖Na flows through the sodium channel is during the brief period when the m-gate is
rapidly opening and the much slower h-gate is beginning to close. A small current flows during the reverse
voltage step but this is at a time when the h-gate is now firmly off so the magnitude is very small.

v. The large sodium current 𝑖Na is an inward current and hence negative.

Note that the bottom trace does not quite line up at t=0 because the values shown on the axes are computed
automatically and hence can take more or less space depending on their magnitude.

36Chapter 9. A model of the sodium channel: Introducing CellML encapsulation and interfaces

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 9.2: Kinetics of the sodium channel gates for voltage steps to (a) -20mV, (b) 0mV (OpenCOR link), and (c)
20mV. 37

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/31aa609fc5a976bb65b2803a4bc24776d4ef612b/sodium_ion_channel.sedml

OpenCOR Tutorial, Release 0.18.0-alpha

38Chapter 9. A model of the sodium channel: Introducing CellML encapsulation and interfaces

CHAPTER

TEN

A MODEL OF THE NERVE ACTION POTENTIAL: INTRODUCING
CELLML IMPORTS

Here we describe the first (and most famous) model of nerve fibre electrophysiology based on the membrane ion
channels that we have discussed in the last two sections. This is the work by Alan Hodgkin and Andrew Huxley
in 1952 [AAF52] that won them (together with John Eccles) the 1963 Noble prize in Physiology or Medicine for
“their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and
central portions of the nerve cell membrane”.

10.1 Cable equation

The cable equation was developed in 18901 to predict the degradation of an elec-
trical signal passing along the transatlantic cable. It is derived as follows:

Fig. 10.1: Current flow in a leaky cable.

If the voltage is raised at the left hand end of the cable (shown by
the deep red in Fig. 10.1), a current 𝑖𝑎 (A) will flow that depends
on the voltage gradient, given by 𝜕𝑉

𝜕𝑥 (𝑉.𝑚−1) and the resistance
𝑟𝑎 (Ω.𝑚−1), Ohm’s law gives −𝜕𝑉

𝜕𝑥 = 𝑟𝑎𝑖𝑎 . But if the cable
leaks current 𝑖𝑚 (𝐴.𝑚−1) per unit length of cable, conservation
of current gives 𝜕𝑖𝑎

𝜕𝑥 = 𝑖𝑚 and therefore, substituting for 𝑖𝑎 ,
𝜕
𝜕𝑥

(︁
− 1

𝑟𝑎
𝜕𝑉
𝜕𝑥

)︁
= 𝑖𝑚 . There are two sources of membrane cur-

rent 𝑖𝑚 , one associated with the capacitance 𝐶𝑚 (≈ 1𝜇𝐹/cm2)
of the membrane, 𝐶𝑚

𝜕𝑉
𝜕𝑡 , and one associated with holes or chan-

nels in the membrane, 𝑖leak. Inserting these into the RHS gives

𝜕

𝜕𝑥

(︂
− 1

𝑟𝑎

𝜕𝑉

𝜕𝑥

)︂
= 𝑖𝑚 = 𝐶𝑚

𝜕𝑉

𝜕𝑡
+ 𝑖leak

Rearranging gives the cable equation (for constant 𝑟𝑎):

𝐶𝑚
𝜕𝑉

𝜕𝑡
= − 1

𝑟𝑎

𝜕2𝑉

𝜕𝑥2
− 𝑖leak

where all terms represent current density (current per membrane area) and have units of 𝜇𝐴/cm2.

1 http://en.wikipedia.org/wiki/Cable_theory

39

http://en.wikipedia.org/wiki/Cable_theory

OpenCOR Tutorial, Release 0.18.0-alpha

10.2 Action potentials

Fig. 10.2: Current flow in a neuron.

The cable equation can be used to model the propagation
of an action potential along a neuron or any other excitable
cell. The ‘leak’ current is associated primarily with the in-
ward movement of sodium ions through the membrane ‘sodium
channel’, giving the inward membrane current 𝑖Na, and the
outward movement of potassium ions through a membrane
‘potassium channel’, giving the outward current 𝑖𝐾 (see Fig.
10.2). A further small leak current 𝑖𝐿 = 𝑔𝐿 (𝑉 − 𝐸𝐿)
associated with chloride and other ions is also included.

When the membrane potential 𝑉 rises due to axial current flow,
the Na channels open and the K channels close, such that the membrane potential moves towards the Nernst poten-
tial for sodium. The subsequent decline of the Na channel conductance and the increasing K channel conductance
as the voltage drops rapidly repolarises the membrane to its resting potential of -85mV (see Fig. 10.3).

Fig. 10.3: Current-voltage trajectory during an action poten-
tial.

We can neglect2 the term (− 1
𝑟𝑎

𝜕2𝑉
𝜕𝑥2) (the rate of

change of axial current along the cable) for the
present models since we assume the whole cell is
clamped with an axially uniform potential. We can
therefore obtain the membrane potential 𝑉 by in-
tegrating the first order ODE

dV
dt

= − (𝑖Na + 𝑖𝐾 + 𝑖𝐿) /𝐶𝑚.

Fig. 10.4: A schematic cell diagram describing the current flows across the cell bilipid membrane that are captured
in the Hodgkin-Huxley model. The membrane ion channels are a sodium (Na+) channel, a potassium (K+) channel,
and a leakage (L) channel (for chloride and other ions) through which the currents INa, IK and IL flow, respectively.

We use this example to demonstrate the import-
ing feature of CellML. CellML imports are used
to bring a previously defined CellML model of a
component into the new model (in this case the Na

2 This term is needed when determining the propagation of the action potential, including its wave speed.

40 Chapter 10. A model of the nerve action potential: Introducing CellML imports

OpenCOR Tutorial, Release 0.18.0-alpha

and K channel components defined in the previous
two sections, together with a leakage ion channel
model specified below). Note that importing a component brings the children components with it along with their
connections and units, but it does not bring the siblings of that component with it.

To establish a CellML model of the HH equations we first lay out the model components with their public and
private interfaces (Fig. 10.5).

Fig. 10.5: Overall structure of the HH CellML model showing the encapsulation hierarchy (purple), the CellML
model imports (blue) and the other key parts (units, components, and mappings) of the top level CellML model.

The HH model is the top level model. The CellML Text code for the HH model, together with the leakage_channel
model, is given below. The imported potassium_ion_channel model and sodium_ion_channel model are un-
changed from the previous sections

HH.cellml

def model HH as
def import using "sodium_ion_channel.cellml" for

comp Na_channel using comp sodium_channel;
enddef;
def import using "potassium_ion_channel.cellml" for

comp K_channel using comp potassium_channel;
enddef;
def import using "leakage_ion_channel.cellml" for

comp L_channel using comp leakage_channel;

(continues on next page)

10.2. Action potentials 41

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

enddef;
def unit millisec as

unit second {pref: milli};
enddef;
def unit millivolt as

unit volt {pref: milli};
enddef;
def unit microA_per_cm2 as

unit ampere {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;
def unit microF_per_cm2 as

unit farad {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;
def group as encapsulation for

comp membrane incl
comp Na_channel;
comp K_channel;
comp L_channel;

endcomp;
enddef;
def comp environment as

var V: millivolt {init: -85, pub: out};
var t: millisec {pub: out};

enddef;
def map between environment and membrane for

vars V and V;
vars t and t;

enddef;
def map between membrane and Na_channel for

vars V and V;
vars t and t;
vars i_Na and i_Na;

enddef;
def map between membrane and K_channel for

vars V and V;
vars t and t;
vars i_K and i_K;

enddef;
def map between membrane and L_channel for

vars V and V;
vars i_L and i_L;

enddef;
def comp membrane as

var V: millivolt {pub: in, priv: out};
var t: millisec {pub: in, priv: out};
var i_Na: microA_per_cm2 {pub: out, priv: in};
var i_K: microA_per_cm2 {pub: out, priv: in};
var i_L: microA_per_cm2 {pub: out, priv: in};
var Cm: microF_per_cm2 {init: 1};
var i_Stim: microA_per_cm2;
var i_Tot: microA_per_cm2;
i_Stim = sel
case (t >= 1{millisec}) and (t <= 1.2{millisec}):

100{microA_per_cm2};
otherwise:

0{microA_per_cm2};
endsel;
i_Tot = i_Stim + i_Na + i_K + i_L;
ode(V,t) = -i_Tot/Cm;

(continues on next page)

42 Chapter 10. A model of the nerve action potential: Introducing CellML imports

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

enddef;
enddef;

Leakage_ion_channel

def model leakage_ion_channel as
def unit millisec as

unit second {pref: milli};
enddef;
def unit millivolt as

unit volt {pref: milli};
enddef;
def unit per_millivolt as

unit millivolt {expo: -1};
enddef;
def unit microA_per_cm2 as

unit ampere {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;
def unit milliS_per_cm2 as

unit siemens {pref: milli};
unit metre {pref: centi, expo: -2};

enddef;
def comp environment as

var V: millivolt {init: 0, pub: out};
var t: millisec {pub: out};

enddef;
def map between leakage_channel and environment for

vars V and V;
enddef;
def comp leakage_channel as

var V: millivolt {pub: in};
var i_L: microA_per_cm2 {pub: out};
var g_L: milliS_per_cm2 {init: 0.3};
var E_L: millivolt {init: -54.4};
i_L = g_L*(V-E_L);

enddef;
enddef;

Note that the CellML Text code for the potassium channel is Potassium_ion_channel.cellml and for the sodium
channel is Sodium_ion_channel.cellml.

Note that the only units that need to be defined for this top level HH model are the ones explicitly required for the
membrane component. All the other units, required for the various imported sub-models, are imported along with
the imported components.

The results generated by the HH model are shown in Fig. 10.6.

10.2. Action potentials 43

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 10.6: Results from OpenCOR for the Hodgkin Huxley (HH) CellML model. The top panel shows the gen-
erated action potential. Note that the stimulus current is not really needed as the background outward leakage
current is enough to drive the membrane potential up to the threshold for sodium channel opening.

44 Chapter 10. A model of the nerve action potential: Introducing CellML imports

OpenCOR Tutorial, Release 0.18.0-alpha

10.2.1 Important note

It is often convenient to have the sub-models – in this case the sodium_ion_channel.cellml model, the potas-
sium_ion_channel.cellml model and the leakage_ion_channel.cellml model - loaded into OpenCOR at the same
time as the high level model (HH.cellml), as shown in Fig. 10.7 . If you make changes to a model in the CellML
Text view, you must save the file (CTRL-S) before running a new simulation since the simulator works with the
saved model. Furthermore, a change to a sub-model will only affect the high level model which imports it if you
also save the high level model (or use the Reload option under the File menu). An asterisk appears next to the
name of a file when a change has been made and the file has not been saved. The asterisk disappears when the file
is saved.

Fig. 10.7: The HH.cellml model and its three sub-models are available under separate tabs in OpenCOR.

10.2. Action potentials 45

OpenCOR Tutorial, Release 0.18.0-alpha

46 Chapter 10. A model of the nerve action potential: Introducing CellML imports

CHAPTER

ELEVEN

A MODEL OF THE CARDIAC ACTION POTENTIAL: IMPORTING
UNITS AND PARAMETERS

We now examine the Noble 1962 model [D62] that applied the Hodgkin-Huxley approach to cardiac cells and
thereby initiated the development of a long line of cardiac cell models that, in their human cell formulation, are
now used clinically and are the most sophisticated models of any cell type. It was the incorporation of these
models into whole heart bioengineering models that initiated the Physiome Project. We also illustrate the use of
imported units and imported parameter sets.

Cardiac cells have similar gradients of potassium and sodium ions that operate in a similar way to neurons (as do
all electrically active cells). There is one major difference, however, in the potassium channel that holds the cells
in their resting state at -85mV (HH neuron) or -100mV (cardiac Purkinje cells). This difference is illustrated in
Fig. 11.1(a). When the membrane potential is raised above the equilibrium potential for potassium, the cardiac
channel conductance shown by the dashed line drops to nearly zero – i.e. it is an inward rectifier since it rectifies
(‘cuts off’) the outward current that otherwise would have flowed through the channel at that potential. This is
an evolutionary adaptation of the potassium channel to avoid loss of potassium ions out of the cell during the
long plateau phase of the cardiac action potential (Fig. 11.1(b)) needed to give the heart time to contract. This
evolutionary change saves the additional energy that would otherwise be needed to pump potassium ions back into
the cell, but this Faustian “pact with the devil” is also the reason the heart is so susceptible to conduction failure
(more on this later). To explain his data on Purkinje cells Noble [D62] postulated the existence of two inward
rectifier potassium channels, one with a conductance 𝑔𝐾1 that showed voltage dependence but no significant time
dependence and another with conductance 𝑔𝐾2 that showed less severe rectification with time dependent gating
similar to the HH four-gated potassium channel.

Fig. 11.1: Current-voltage relations (a) around the equilibrium potentials for the potassium and sodium channels in
cardiac cells. The sodium channel is similar to the one in neurons but the two potassium channels have an inward
rectifying property that stops leakage of potassium ions out of the cell when the membrane potential (illustrated
in (b)) is high during the plateau phase of the cardiac action potential.

To model the cardiac action potential in Purkinje fibres (a cardiac cell specialised for rapid conduction from the
atrio-ventricular node to the apical ventricular myocardial tissue), Noble [D62] proposed two potassium channels
(one of these being the inwardly rectifying potassium channel described above and the other called the delayed
potassium channel), one sodium channel (very similar to the HH neuronal sodium channel) and one leakage
channel (also similar to the HH one).

47

OpenCOR Tutorial, Release 0.18.0-alpha

The equations for these are as follows: (as for the HH model, time is in ms, voltages are in mV, concentrations are
in mM, conductances are in mS, currents are in µA and capacitance is in µF).

Inward rectifying iK1 potassium channel (voltage dependent only)

𝑖𝐾1 = 𝑔𝐾1 (𝑉 − 𝐸𝐾) , with 𝐸𝐾 =
RT
zF

𝑙𝑛
[𝐾+]𝑜
[𝐾+]𝑖

= 25𝑙𝑛
2.5

140
= −100mV.

𝑔𝐾1 = 1.2𝑒
−(𝑉 +90)

50 + 0.015𝑒
(𝑉 +90)

60

Inward rectifying iK2 potassium channel (voltage and time dependent)1

𝑖𝐾2 = 𝑔𝐾2 (𝑉 − 𝐸𝐾)

𝑔𝐾2 = 1.2𝑛4

dn
dt

= 𝛼𝑛 (1 − 𝑛) − 𝛽𝑛.n, where 𝛼𝑛 =
−0.0001 (𝑉 + 50)

𝑒
−(𝑉 +50)

10 − 1
and 𝛽𝑛 = 0.002𝑒

−(𝑉 +90)
80 .

Note that the rate constants here reflect a much slower onset of the time dependent change in conductance than in
the HH potassium channel.

Sodium channel

𝑖Na = (𝑔Na + 140) (𝑉 − 𝐸Na) , with 𝐸Na =
RT
zF

𝑙𝑛

[︀
Na+

]︀
𝑜[︀

Na+
]︀
𝑖

= 25𝑙𝑛
140

30
= 35mV.

𝑔Na = 𝑚3h.𝑔𝑁𝑎_𝑚𝑎𝑥 where 𝑔𝑁𝑎_𝑚𝑎𝑥 = 400mS.

dm
dt

= 𝛼𝑚 (1 −𝑚) − 𝛽𝑚.m, where 𝛼𝑚 =
−0.1 (𝑉 + 48)

𝑒
−(𝑉 +48)

15 − 1
and 𝛽𝑚 =

0.12 (𝑉 + 8)

𝑒
(𝑉 +8)

5 − 1
dh
dt

= 𝛼ℎ (1 − ℎ) − 𝛽ℎ.h, where 𝛼ℎ = 0.17𝑒
−(𝑉 +90)

20 and 𝛽ℎ =
1

1 + 𝑒
−(𝑉 +42)

10

Leakage channel

𝑖leak = 𝑔𝐿 (𝑉 − 𝐸𝐿) , with 𝐸𝐿 = −60𝑚𝑉 and 𝑔𝐿 = 0.075mS.

Membrane equation2

dV
dt

= − (𝑖Na + 𝑖𝐾1 + 𝑖𝐾2 + 𝑖leak) /𝐶𝑚 where 𝐶𝑚 = 12𝜇F.

Fig. 11.2 shows the structure of the model, including separate files for units, parameters, and the three ion channels
(the two potassium channels are lumped together). We include the Nernst equations dependence on potassium and
sodium ion concentrations in order to demonstrate the use of parameter values, defined in a separate parameters
file, that are read in at the top (whole cell model) level and passed down to the individual ion channel models.

1 The second inwardly rectifying channel model was later replaced with two currents and , so that modern cardiac cell models do not
include but they do include the inward rectifier (see later section).

2 The Purkinje fibre membrane capacitance is 12 times higher than that found for squid axon. The use of 𝜇F ensures unit consistency with
ms, mV and A since F is equivalent to C.V−1 or s.A.V−1 and therefore A/ F or A/(ms. A. mV−1) on the RHS matches mV/ms on the LHS).

48 Chapter 11. A model of the cardiac action potential: Importing units and parameters

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 11.2: Overall structure of the Noble62 CellML model showing the encapsulation hierarchy (purple), the
CellML model imports (blue) and the other key parts (units, components & mappings) of the top level CellML
model. Note that the overall structure of the Noble62 model differs from that of the earlier HH model in that
all units are defined in a units file and imported where needed (shown by the import arrows). Also the ion
concentration parameters are defined in a parameters file and imported into the top level file but passed down to
the modules that use them via the mappings.

The CellML Text code for all six files is shown on the following two pages. The arrows indicate the imports
(appropriately colour coded for units, components, and parameters).

Graphical outputs from solution of the Noble 1962 model with OpenCOR for 5000ms are shown in Fig. 11.2.
Interpretation of the model outputs is given in the Fig. 11.2 legend. The Noble62 model was developed further by
Noble and others to include additional sodium and potassium channels, calcium channels (needed for excitation-
contraction coupling), chloride channels and various ion exchange mechanisms (Na/Ca, Na/H), co-transporters
(Na/Cl, K/Cl) and energy (ATP)-dependent pumps (Na/K, Ca) needed to model the observed beat by beat changes
in intracellular ion concentrations. These are discussed further in Section 15.

Note: The downloadable links below are links to the raw text file that may be used for copying and pasting into
OpenCOR. For the underlying CellML file that is suitable for opening with OpenCOR from disk obtain the xml
file.

Raw text: Noble_1962.txt, XML file: Noble_1962.cellml.

49

https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble_1962.cellml

OpenCOR Tutorial, Release 0.18.0-alpha

def model Noble_1962 as
def import using "Noble62_Na_channel.xml" for

comp Na_channel using comp sodium_channel;
enddef;
def import using "Noble62_K_channel.xml" for

comp K_channel using comp potassium_channel;
enddef;
def import using "Noble62_L_channel.xml" for

comp L_channel using comp leakage_channel;
enddef;
def import using "Noble62_units.xml" for

unit mV using unit mV;
unit ms using unit ms;
unit nanoF using unit nanoF;
unit nanoA using unit nanoA;

enddef;
def import using "Noble62_parameters.xml" for

comp parameters using comp parameters;
enddef;
def map between parameters and membrane for

vars Ki and Ki;
vars Ko and Ko;
vars Nai and Nai;
vars Nao and Nao;

enddef;
def comp environment as

var t: ms {init: 0, pub: out};
enddef;
def group as encapsulation for

comp membrane incl
comp Na_channel;
comp K_channel;
comp L_channel;

endcomp;
enddef;
def comp membrane as

var V: mV {init: -85, pub: out, priv: out};
var t: ms {pub: in, priv: out};
var Cm: nanoF {init: 12000};
var Ki: mM {pub: in, priv: out};
var Ko: mM {pub: in, priv: out};
var Nai: mM {pub: in, priv: out};
var Nao: mM {pub: in, priv: out};
var i_Na: nanoA {pub: out, priv: in};
var i_K: nanoA {pub: out, priv: in};
var i_L: nanoA {pub: out, priv: in};
ode(V, t) = -(i_Na+i_K+i_L)/Cm;

enddef;
def map between environment and membrane for

vars t and t;
enddef;
def map between membrane and Na_channel for

vars V and V;
vars t and t;
vars Nai and Nai;
vars Nao and Nao;
vars i_Na and i_Na;

enddef;
def map between membrane and K_channel for

vars V and V;
vars t and t;
vars Ki and Ki;

(continues on next page)

50 Chapter 11. A model of the cardiac action potential: Importing units and parameters

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

vars Ko and Ko;
vars i_K and i_K;

enddef;
def map between membrane and L_channel for

vars V and V;
vars i_L and i_L;

enddef;
enddef;

Raw text: Noble62_units.txt, XML file Noble62_units.cellml.

def model Noble62_units as
def unit ms as

unit second {pref: milli};
enddef;
def unit per_ms as

unit second {pref: milli, expo: -1};
enddef;
def unit mV as

unit volt {pref: milli};
enddef;
def unit mM as

unit mole {pref: milli};
enddef;
def unit per_mV as

unit volt {pref: milli, expo: -1};
enddef;
def unit per_mV_ms as

unit mV {expo: -1};
unit ms {expo: -1};

enddef;
def unit microS as

unit siemens {pref: micro};
enddef;
def unit nanoF as

unit farad {pref: nano};
enddef;
def unit nanoA as

unit ampere {pref: nano};
enddef;

enddef;

Raw text: Noble62_parameters.txt, XML file Noble62_parameters.cellml.

def model Noble62_parameters as
def import using "Noble62_units.xml" for

unit mM using unit mM;
enddef;
def comp parameters as

var Ki: mM {init: 140, pub: out};
var Ko: mM {init: 2.5, pub: out};
var Nai: mM {init: 30, pub: out};
var Nao: mM {init: 140, pub: out};

enddef;
enddef;

Raw text: Noble62_Na_channel.txt, XML file Noble62_Na_channel.cellml.

def model sodium_ion_channel as
def import using "Noble62_units.xml" for

unit mV using unit mV;

(continues on next page)

51

https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_units.cellml
https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_parameters.cellml
https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_Na_channel.cellml

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

unit ms using unit ms;
unit mM using unit mM;
unit per_ms using unit per_ms;
unit per_mV using unit per_mV;
unit per_mV_ms using unit per_mV_ms;
unit microS using unit microS;
unit nanoA using unit nanoA;

enddef;
def group as encapsulation for

comp sodium_channel incl
comp sodium_channel_m_gate;
comp sodium_channel_h_gate;

endcomp;
enddef;
def comp sodium_channel as

var V: mV {pub: in, priv: out};
var t: ms {pub: in, priv: out};
var g_Na_max: microS {init: 400000};
var g_Na: microS;
var E_Na: mV;
var m: dimensionless {priv: in};
var h: dimensionless {priv: in};
var Nai: mM {pub: in};
var Nao: mM {pub: in};
var RTF: mV {init: 25};
var i_Na: nanoA {pub: out};
E_Na = RTF*ln(Nao/Nai);
g_Na = pow(m, 3{dimensionless})*h*g_Na_max;
i_Na = (g_Na+140{microS})*(V-E_Na);

enddef;
def comp sodium_channel_m_gate as

var V: mV {pub: in};
var t: ms {pub: in};
var m: dimensionless {init: 0.01, pub: out};
var alpha_m: per_ms;
var beta_m: per_ms;
alpha_m = -0.10{per_mV_ms}*(V+48{mV})

/(exp(-(V+48{mV})/15{mV})-1{dimensionless});
beta_m = 0.12{per_mV_ms}*(V+8{mV})

/(exp((V+8{mV})/5{mV})-1{dimensionless});
ode(m, t)=alpha_m*(1{dimensionless}-m)-beta_m*m;

enddef;
def comp sodium_channel_h_gate as

var V: mV {pub: in};
var t: ms {pub: in};
var h: dimensionless {init: 0.8, pub: out};
var alpha_h: per_ms;
var beta_h: per_ms;
alpha_h = 0.17{per_ms}*exp(-(V+90{mV})/20{mV});
beta_h = 1.00{per_ms}

/(1{dimensionless}+exp(-(V+42{mV})/10{mV}));
ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;

enddef;
def map between sodium_channel
and sodium_channel_m_gate for
vars V and V;
vars t and t;
vars m and m;

enddef;
def map between sodium_channel
and sodium_channel_h_gate for

(continues on next page)

52 Chapter 11. A model of the cardiac action potential: Importing units and parameters

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

vars V and V;
vars t and t;
vars h and h;

enddef;
enddef;

Raw text: Noble62_K_channel.txt, XML file Noble62_K_channel.cellml.

def model potassium_ion_channel as
def import using "Noble62_units.xml" for

unit mV using unit mV;
unit ms using unit ms;
unit mM using unit mM;
unit per_ms using unit per_ms;
unit per_mV using unit per_mV;
unit per_mV_ms using unit per_mV_ms;
unit microS using unit microS;
unit nanoA using unit nanoA;

enddef;
def group as encapsulation for

comp potassium_channel incl
comp potassium_channel_n_gate;

endcomp;
enddef;
def comp potassium_channel as

var V: mV {pub: in, priv: out};
var t: ms {pub: in, priv: out};
var n: dimensionless {priv: in};
var Ki: mM {pub: in};
var Ko: mM {pub: in};
var RTF: mV {init: 25};
var E_K: mV;
var g_K1: microS;
var g_K2: microS;
var i_K: nanoA {pub: out};
E_K = RTF*ln(Ko/Ki);
g_K1 = 1200{microS}*exp(-(V+90{mV})/50{mV})

+15{microS}*exp((V+90{mV})/60{mV});
g_K2 = 1200{microS}*pow(n, 4{dimensionless});
i_K = (g_K1+g_K2)*(V-E_K);

enddef;
def comp potassium_channel_n_gate as

var V: mV {pub: in};
var t: ms {pub: in};
var n: dimensionless {init: 0.01, pub: out};
var alpha_n: per_ms;
var beta_n: per_ms;
alpha_n = -0.0001{per_mV_ms}*(V+50{mV})
/(exp(-(V+50{mV})/10{mV})-1{dimensionless});

beta_n = 0.0020{per_ms}*exp(-(V+90{mV})/80{mV});
ode(n,t)= alpha_n*(1{dimensionless}-n)-beta_n*n;

enddef;
def map between environment
and potassium_channel for
vars V and V;
vars t and t;

enddef;
def map between potassium_channel and
potassium_channel_n_gate for
vars V and V;
vars t and t;

(continues on next page)

53

https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_K_channel.cellml

OpenCOR Tutorial, Release 0.18.0-alpha

(continued from previous page)

vars n and n;
enddef;

enddef;

Raw text: Noble62_L_channel.txt, XML file Noble62_L_channel.cellml.

def model leakage_ion_channel as
def import using "Noble62_units.xml" for

unit mV using unit mV;
unit ms using unit ms;
unit microS using unit microS;
unit nanoA using unit nanoA;

enddef;
def comp leakage_channel as

var V: mV {pub: in};
var g_L: microS {init: 75};
var E_L: mV {init: -60};
var i_L: nanoA {pub: out};
i_L = g_L*(V-E_L);

enddef;
enddef;

54 Chapter 11. A model of the cardiac action potential: Importing units and parameters

https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_L_channel.cellml

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 11.3: Output from the Noble62 model (OpenCOR link). Top panel is 𝑉 (𝑡), the cardiac action potential.
The next panel has the two membrane ion channel currents 𝑖Na (𝑡) and 𝑖𝐾 (𝑡). Note that 𝑖Na (𝑡) has a very brief
downward (i.e. inward current) spike that is triggered when the membrane voltage reaches about -70mV. This
is caused by the huge increase in sodium channel conductance 𝑔Na (𝑡) shown in the panel below associated with
the simultaneous opening of the m-gate and closing of the h-gate (5th panel down). The resting state of about
-80mV in the top panel is set by the potassium equilibrium (Nernst) potential via the open potassium channels.
As can be seen from the 4th and bottom panels, it is the closing of the time-dependent potassium n-gate and the
corresponding decline of potassium conductance that, with a small background leakage current 𝑖𝐿 (𝑡), leads to the
membrane potential rising from -80mV to the threshold for activation of the sodium channel (note the dotted red
line showing the point when n(t) reaches a minimum). Later cardiac cell models include additional ion channels
that directly affect the heart rate by controlling this rise.

We have now covered all existing features of CellML and OpenCOR. But, most importantly, you have learned
‘best practice’ for building CellML models, including encapsulation of sub-components and a modular approach
in which units, parameters and model components are defined in separate files that are imported into a composite
model.

55

opencor://openFile/https://models.physiomeproject.org/workspace/25d/rawfile/e3ef4cf57b9be0b9f5ccb72e98dac46f2381add5/Noble_1962.sedml

OpenCOR Tutorial, Release 0.18.0-alpha

56 Chapter 11. A model of the cardiac action potential: Importing units and parameters

CHAPTER

TWELVE

CODE GENERATION

It is sometimes required to export CellML models to various procedural formats to make use of a given model
with existing tools. OpenCOR currently uses the CellML Language Export Definition Service provided by the
CellML API to achieve this (see this article for details). This service takes an XML file containing a conversion
definition and uses that to export a CellML model to the defined format.

The OpenCOR distribution packages include definition files for C, Fortran 77, Python, and Matlab. These defi-
nition files are available in the formats folder of your OpenCOR installation or can be downloaded and used
directly using the previous links.

The C and Fortran code generated using these definition files contain functions suitable for inclusion in DAE/ODE
simulation codes. Whereas the Python and Matlab code generated are complete scripts that use standard Python or
Matlab methods to actually perform an default simulation. The default simulation is probably not what is needed,
so the generated code can be modified or reused to meet the specific usage requirements.

12.1 Exporting CellML to code

The steps to generate code from OpenCOR are given below.

1. Load the desired CellML model into OpenCOR (both CellML 1.0 and 1.1 models can be used)

2. From the OpenCOR menu, choose Tools → CellML File Export To → User-Defined Format.

3. The first file selection dialog is to provide the conversion definition file (as above).

4. The second file selection dialog is to provide the file to save the generated code to.

This conversion can also be performed using OpenCOR as a command line client. In this case the command is:

$./OpenCOR -c CellMLTools::export myfile.cellml myformat.xml

or for a remote model:

$./OpenCOR -c CellMLTools::export http://mydomain.com/myfile.cellml myformat.xml

where myformat.xml can be one of the standard definition files described above.

12.2 Generated code in PMR

The Physiome Model Repository uses the same code generation service from the CellML API to generate code
in the above formats for all exposures containing CellML models. These are available from the Generated Code
view for CellML models. See here for an example.

57

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858041/
https://raw.githubusercontent.com/opencor/opencor/master/formats/C.xml
https://raw.githubusercontent.com/opencor/opencor/master/formats/F77.xml
https://raw.githubusercontent.com/opencor/opencor/master/formats/Python.xml
https://raw.githubusercontent.com/opencor/opencor/master/formats/MATLAB.xml
https://models.physiomeproject.org/e/430/sodium_ion_channel.cellml/cellml_codegen

OpenCOR Tutorial, Release 0.18.0-alpha

58 Chapter 12. Code generation

CHAPTER

THIRTEEN

MODEL ANNOTATION

One of the most powerful features of CellML is its ability to import models. This means that complex models
can be built up by combining previously defined models. There is a potential problem with this process, however,
since the imported models (often developed by completely different modellers) may represent the same biolog-
ical or biophysical entity with different expressions. The potassium channel model in A model of the potassium
channel: Introducing CellML components and connections, for example, represents the intracellular concentration
of potassium as ‘Ki’ (see the CellML Text code Potassium_ion_channel.cellml) but another model involving the
intracellular potassium concentration may use a different expression.

The solution to this dilemma is to annotate the CellML variables with names from controlled vocabularies that
have been agreed upon by the relevant scientific community. In this case we may simply want to annotate Ki
as ‘the concentration of potassium in the cytosol’. This expression, however, refers to three distinct entities:
concentration, potassium and cytosol. We might also want to specify that we are referring to the cytosol of a
neuron . . . and that the neuron comes from a particular part of a giant squid (the experimental animal used by
Hodgkin and Huxley). Annotations can clearly get very complicated!

What comes to our rescue here is that most scientific communities have developed controlled vocabularies to-
gether with the relationships between the terms of that vocabulary – called ontologies. Furthermore relationships
can always be expressed in the form subject-predicate-object. E.g. Ki is-the-concentration-of potassium is one
relationship and potassium in-the cytosol is another. Each object can become the subject of another expression.
We could continue, for example, with cytosol of-the neuron, neuron of-the squid and so on. The terms s-the-
concentration-of, in-the and of-the are the predicates and these semantically rich expressions too have to come
from controlled vocabularies. Each of these subject-predicate-object expressions is called an RDF triple and the
World Wide Web consortium1 has established a framework called the Resource Description Framework (RDF2)
to support these.

CellML models therefore contain two parts, one dealing with syntax (the MathML definition of the models to-
gether with the structure of components, connections, groups, units, etc) as discussed in previous sections, and
one dealing with semantics (the meanings of the terms used in the models) discussed in this section3. This latter
is also referred to as metadata – i.e. data about data.

In the CellML metadata specification4 the first RDF subject of a triple is a CellML element (e.g. a variable such
as ‘Ki’), the RDF predicate is chosen from the Biomodels Biological Qualifiers5 list, and the RDF object is a URI
(the string of characters used to identify the name of a resource6). Establishing these RDF links to biological and
biophysical meaning is the goal of annotation.

Note the different types of subject/object used in the RDF triples: the concentration is a biophysical entity, potas-
sium is a chemical entity, the cytosol is an anatomical entity. In fact, to cover all the terminology used in the
models, CellML uses five separate ontologies:

• ChEBI (Chemical Entities of Biological Interest) www.ebi.ac.uk/chebi

• GO (Gene Ontology) www.geneontology.org

• FMA (Foundation Model of Anatomy) fma.biostr.washington.edu/projects/fm/

1 Referred to as W3C – see www.w3.org
2 www.w3.org/RDF
3 For details on the annotation plugin see http://opencor.ws/user/plugins/editing/CellMLAnnotationView.html
4 See http://www.cellml.org/specifications/metadata/ and http://www.cellml.org/specifications/metadata/mcdraft
5 http://co.mbine.org/standards/qualifiers
6 http://en.wikipedia.org/wiki/Uniform_resource_identifier

59

http://www.ebi.ac.uk/chebi
http://www.geneontology.org
http://sig.biostr.washington.edu/projects/fm/
http://www.w3.org
http://www.w3.org/RDF
http://opencor.ws/user/plugins/editing/CellMLAnnotationView.html
http://www.cellml.org/specifications/metadata/
http://www.cellml.org/specifications/metadata/mcdraft
http://co.mbine.org/standards/qualifiers
http://en.wikipedia.org/wiki/Uniform_resource_identifier

OpenCOR Tutorial, Release 0.18.0-alpha

• Cell type ontology code.google.com/p/cell-ontology

• OPB sbp.bhi.washington.edu/projects/the-ontology-of-physics-for-biology-opb

These ontologies are available through OpenCOR’s annotation facilities as explained below.

Fig. 13.1: Clicking on CellML Annotation lists the
CellML components with their variables ready for an-
notation.

If we now go back to the potassium ion channel CellML
model and, under Editing, click on CellML Annotation,
the various elements of the model (Units, Components,
Variables, Groups and Connections) are displayed (see
Fig. 13.1). If you right click on any of them a popup menu
will appear, which you can use to expand/collapse all the
child nodes, as well as remove the metadata associated
with the current CellML element or the whole CellML
file. Expanding Components lists all the components and
their variables. To annotate the potassium channel com-
ponent, select it and specify a Qualifier from the list dis-
played:

bio:encodes, bio:isPropertyOf
bio:hasPart, bio:isVersionOf
bio:hasProperty, bio:occursIn
bio:hasVersion, bio:hasTaxon
bio:is, model:is
bio:isDescribedBy, model:isDerivedFrom
bio:isEncodedBy, model:isDescribedBy
bio:isHomologTo, model:isInstanceOf
bio:isPartOf, model:hasInstance

If you do not know which qualifier to use, click on the
button to get some information about the current qualifier
(you must be connected to the internet) and go through
the list of qualifiers until you find the one that best suits
your needs. Here, we will say that you want to use
bio:isVersionOf. Fig. 13.2 shows the information dis-
played about this qualifier.

60 Chapter 13. Model annotation

https://code.google.com/p/cell-ontology
http://sbp.bhi.washington.edu/projects/the-ontology-of-physics-for-biology-opb

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 13.2: The qualifiers are displayed from the top right menu. Clicking on the most appropriate one
(bio:isVersionOf) gives more information about this qualifier in the bottom panel.

Now you need to retrieve some possible ontological terms
to describe the potassium_channel component. For this
you must enter a search term, which in our case is ‘potas-
sium channel’ (note that regular expressions are sup-
ported7). This returns 24 possible ontological terms as
shown in Fig. 13.3. The voltage-gated potassium chan-
nel complex is the most appropriate. Clicking on the GO
identifier link shown provides more information about this
term (see Fig. 13.4).

7 http://en.wikipedia.org/wiki/Regular_expression

61

http://en.wikipedia.org/wiki/Regular_expression

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 13.3: The ontological terms listed when ‘potassium channel’ is entered into the search box next to Term.

Fig. 13.4: The qualifier, resource & ID information in the middle panel appears when you click on the button
next to the selected term in Fig.32. GO identifier details are listed when either of the arrowed links are clicked.

62 Chapter 13. Model annotation

OpenCOR Tutorial, Release 0.18.0-alpha

Now, assuming that you are happy with your choice of ontological term, you can associate it with the potas-

sium_channel component by clicking on its corresponding button which then displays the qualifier, resource
and ID information in the middle panel as shown in Fig. 13.3. If you make a mistake, this can be removed by

clicking on the button.

The first level annotation of the potassium_channel component has now been achieved. The content of the three
terms in the RDF triple are shown in Fig. 13.5, along with the annotation for the variables Ki and Ko.

Fig. 13.5: The RDF triple used in CellML metadata to link a CellML element (component or variable) with
an ontological term from one of the five ontologies accessed via identifiers.org, using a predicate qualifier from
BioModels.net. The three examples of annotated CellML model elements shown are for (1) the potassium_channel
component (this points to a GO identifier), (2) the variable Ki, and (3) the variable Ko. These two variables are de-
fined within the potassium_channel component of the model and point to CHEBI identifiers. A further annotation
is needed to identify the cellular location of those variables (since one is intracellular and one is extracellular).

def comp {id_000000001} potassium_channel as
var V: millivolt {pub: in, priv: out};
var t: millisec {pub: in, priv: out};
var n: dimensionless {priv: in};
var i_K: microA_per_cm2 {pub: out};
var g_K: milliS_per_cm2 {init: 36};
var {id_000000002} Ki: mM {init: 90};
var {id_000000003} Ko: mM {init: 3};
var RTF: millivolt {init: 25};
var E_K: millivolt;
var K_conductance: milliS_per_cm2 {pub: out};

E_K = RTF*ln(Ko/Ki);
K_conductance = g_K*pow(n, 4{dimensionless});
i_K = K_conductance*(V-E_K);

enddef;

When saved (the CellML Annotation tag will appear un-grayed), the result of these annotations is to add metadata
to the CellML file. If you switch to the CellML Text view you will see that the elements that have been annotated
appear with ID numbers, as shown above. These point to the corresponding metadata contained in the CellML
file for this model and are displayed under the qualifier-resource-Id headings in the annotation window when you
click on the element in the editing window.

Note that the three annotations added above are all biological annotations. Many of the other components and vari-
ables in the CellML potassium channel model deal with biophysical entities and these require the use of the OPB
ontology (yet to be implemented in OpenCOR). The use of composite annotations is also being developed8, such

8 This is a project being carried out at the University of Washington, Seattle, using an annotation tool called SEMGEN (. . .).

63

http://www.identifiers.org/
http://biomodels.net/qualifiers/

OpenCOR Tutorial, Release 0.18.0-alpha

as “Ki is-the concentration of potassium in-the cytosol of-the neuron of-the giant-squid”, where concentration,
potassium, cytosol, neuron and giant-squid are defined by the ontologies OPB, ChEBI, GO, FMA and a species
ontology, respectively.

64 Chapter 13. Model annotation

CHAPTER

FOURTEEN

THE PHYSIOME MODEL REPOSITORY AND THE LINK TO
BIOINFORMATICS

The Physiome Model Repository (PMR) [LCPF08] is the main online repository for the IUPS Physiome Project,
providing version and access controlled repositories, called workspaces, for users to store their data. Currently
there are over 700 public workspaces and many private workspaces in the repository. PMR also provides a mech-
anism to create persistent access to specific revisions of a workspace, termed exposures. Exposure plugins are
available for specific types of data (e.g. CellML or FieldML documents) which enable customizable views of the
data when browsing the repository via a web browser, or an application accessing the repository’s content via web
services.

More complete documentation describing how to use PMR is available in the PMR documentation: https://models.
physiomeproject.org/docs.

The CellML models on models.physiomeproject.org are listed under 20 categories, shown below: (numbers of
exposures in each category are given besides the bar graph, correct as at early 2016)

Browse by category

Calcium Dynamics 140
Cardiovascular Circulation 60
Cell Cycle 38
Cell Migration 2
Circadian Rhythms 22
Electrophysiology 230
Endocrine 60
Excitation-Contraction Coupling 22
Gene Regulation 12
Hepatology 29
Immunology 55
Ion transport 13
Mechanical Constitutive Laws 19
Metabolism 86
Myofilament Mechanics 22
Neurobiology 33
pH regulation 2
PKPD 11
Signal Transduction 120
Synthetic Biology 6

Note that searching of models can be done anywhere on the site using the search box on the upper right hand
corner. An important benefit of ensuring that the models on the PMR are annotated is that models can then be
retrieved by a web-search using any of the annotated terms in the models.

65

https://models.physiomeproject.org/docs
https://models.physiomeproject.org/docs
https://models.physiomeproject.org

OpenCOR Tutorial, Release 0.18.0-alpha

To illustrate the features of PMR, click on the Hund, Rudy 2004 (Basic) model in the alphabetic listing of models
under the Electrophysiology category.

Fig. 14.1: The Physiome Model Repository exposure page for the basic Hund-Rudy 2004 model.

The section labelled ‘Model Structure’ contains the journal paper abstract and often a diagram of the model1.
This is shown for the Hund-Rudy 2004 model in Fig. 14.2. This model, with over 22 separate protein model
components, is also a good example of why it is important to build models from modular components [CMEJ08],
and in particular the individual ion channels for electrophysiology models.

1 These are currently hand drawn SVG diagrams but the plan is to automatically generate them from the model annotation and also (at
some stage!) to animate them as the model is executed.

66 Chapter 14. The Physiome Model Repository and the link to bioinformatics

https://models.physiomeproject.org/exposure/f4b7120aa512c7f5e7a0664abcee3e8b/hund_rudy_2004_a.cellml/view

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 14.2: A diagrammatic representation of the Hund-Rudy 2004 model.

There is a list of ‘Views Available’ for the CellML model on the right hand side of the exposure page. The function
of each of these views is as follows:

Views Available

Documentation - Takes you to the main exposure page.

Model Metadata - Lists metadata including authors, title, journal, Pubmed ID and model annotations.

Model Curation - Provides the curation status of the model. Note: this is soon to be updated.

Mathematics - Displays all the mathematical equations contained in the model.

Generated Code - Various codes (C, C-IDA, F77, MATLAB or Python) generated from the model.

Cite this model - Provides details on how to cite use of the CellML model.

Source view - Gives a full listing of the XML code for the model.

Launch with OpenCOR - Opens the model (or simulation experiment) in OpenCOR.

Note that CellML models are available under a Creative Commons Attribution 3.0 Unported License2. This means
that you are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

for any purpose, including commercial use.

The next stage of content development for PMR is to provide a list of the modular components of these models
each with their own exposure. For example, models for each of the individual ion channels used in the publication-
based electrophysiological models will be available as standalone models that can then be imported as appropriate
into a new composite model. Similarly for enzymes in metabolic pathways and signalling complexes in signalling
pathways, etc. Some examples of these protein modules are:

Sodium/hydrogen exchanger 3 https://models.physiomeproject.org/e/236/

Thiazide-sensitive Na-Cl cotransporter https://models.physiomeproject.org/e/231/

2 https://creativecommons.org/licenses/by/3.0/

67

https://models.physiomeproject.org/e/236/
https://models.physiomeproject.org/e/231/
https://creativecommons.org/licenses/by/3.0/

OpenCOR Tutorial, Release 0.18.0-alpha

Sodium/glucose cotransporter 1 https://models.physiomeproject.org/e/232/

Sodium/glucose cotransporter 2 https://models.physiomeproject.org/e/233/

Note that in each case, as well as the CellML-encoded mathematical model, links are provided (see Fig. 14.3) to
the UniProt Knowledgebase for that protein, and to the Foundational Model of Anatomy (FMA) ontology (via
the EMBLE-EBI Ontology Lookup Service) for information about tissue regions relevant to the expression of that
protein (e.g. Proximal convoluted tubule, Apical plasma membrane; Epithelial cell of proximal tubule; Proximal
straight tubule). Similar facilities are available for SMBL-encoded biochemical reaction models through the
Biomodels database [AYY].

Fig. 14.3: The PMR workspace for the Thiazide-sensitive Na-Cl cotransporter. Bioinformatic data for this model
is accessed via the links under the headings highlight by the arrows and include Protein (labelled A) and the
model Location (labelled B). Other information is as already described for the Hund-Rudy 2004 model.

68 Chapter 14. The Physiome Model Repository and the link to bioinformatics

https://models.physiomeproject.org/e/232/
https://models.physiomeproject.org/e/233/

CHAPTER

FIFTEEN

USING PMR WITH OPENCOR

In addition to the PMR window for browsing public exposures directly in OpenCOR (PMR window) OpenCOR
has the ability for users to directly create and access their workspaces in PMR.

Note: It is a feature of PMR that all data is persistent and permanent. As such, any workspaces created on the
main instance of PMR (https://models.physiomeproject.org/) can not be deleted. For the purposes of teaching, we
have an alternate instance of PMR (https://teaching.physiomeproject.org/) which is periodically cleared out and
synschronised from the main instance. Using the teaching instance allows you to play around without the worry
of things being permanent.

1. Register for a user account on the teaching instance of PMR.

In order to make use of the teaching instance of PMR, you must first have an account for that instance of the
repository. For teaching purposes it is best to register a new account. This can be done by first opening this link
in your browser: https://teaching.physiomeproject.org. Then click the Log in button on (shown in Fig. 15.1) then
the registration form link.

Fig. 15.1: The log in button for the teaching instance of PMR.

After filling in the names and email fields and clicking Register you will receive an email inviting you to confirm
and set a password. Once that is completed you can then log in. Clicking on My Workspaces will take you to a
listing of all your workspaces and provides access to the the Workspace creation form.

2. Create a new workspace, in this example the title ‘Test workspace’ has been used.

15.1 The PMR Workspaces window

A window labelled PMR workspaces is available in OpenCOR (see Fig. 15.2). If it is not currently visible it can
be selected via View → Windows → PMR workspaces (or perhaps the Ctrl-space shortcut).

69

https://models.physiomeproject.org/
https://teaching.physiomeproject.org/
https://teaching.physiomeproject.org

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 15.2: PMR workspace shown on the left hand panel in OpenCOR. The preferences button is highlighted.

3. Set preferences.

Clicking the preferences button (Fig. 15.2) presents a Preferences dialog box with three settings: PMR instance,
Name and Email. For the current purpose choose https://teaching.physiomeproject.org for the first and enter your
name and email. These are used to identify you as the author of changes you submit back to the repository (view
an example history).

4. Log into PMR from OpenCOR.

Before you can view private information or submit changes to PMR you must first log in to PMR from OpenCOR
and grant OpenCOR permission to use your account. You accomplish this by clicking on the top right button in
the PMR Workspaces window and then logging in with your new user name and password (created in step 1).
Then grant access for OpenCOR to gain access to your PMR workspaces. The PMR workspaces window will
then show all your workspaces, which should currently consist of the new workspace created in step 2. Note that
using the same top right button you can log off - and when you next authenticate you will again be asked to grant
access but this time without needing to login with your password.

Right clicking on the workspace name brings up a list of options for that workspace, the first being to view the
workspace within PMR (in the web browser). Another option allows you to make a local copy of a workspace on
your local disk - this will create a copy of the workspace on your local computer in which you are able to make
changes.

5. Make a local copy of your test workspace

Using the Make Local Workspace Copy. . . option from the right-click menu on the workspace you created in step
2, clone the workspace to your PC. When doing this you will need to provide the folder in which you want to store
the workspace contents - make sure you remember where this folder is!

6. Save a CellML model to your workspace.

A CellML file opened in OpenCOR (choose any model you have access to) can be saved (File → Save As. . .) to
the folder you created for the cloned workspace. Once you have saved a model you will see the file appear under
the workspace’s folder in the PMR Workspaces window. Note that the file appears under the workspace with a
red patch on the logo indicating the the file is not yet flagged to upload. To upload the file to PMR, you need to
choose Synchronise Workspace With PMR. . . from the right-click menu on the workspace folder. This will ask
you to provide a description of the change you would like to submit to PMR, and display all the differences you
will be synchronising. When you now click the OK button, the changes will actually be submitted to PMR and
you will see the file appear on the refreshed browser window. The file icon in the PMR Workspaces window will
be shown without the red or green patch. Fig. 15.3 shows two CellML files that have been uploaded to PMR.

70 Chapter 15. Using PMR with OpenCOR

https://models.physiomeproject.org/workspace/43a/@@shortlog

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 15.3: Two CellML files (New - BG Fluids model 3.cellml and new - kidney.cellml) have
been uploaded from OpenCOR to PMR and can be seen in the PMR workspace on the browser window on the
right.

15.1. The PMR Workspaces window 71

OpenCOR Tutorial, Release 0.18.0-alpha

72 Chapter 15. Using PMR with OpenCOR

CHAPTER

SIXTEEN

SED-ML, FUNCTIONAL CURATION AND WEB LAB

In the same way that CellML models can be defined unambiguously, and shared easily, in a machine-readable
format, there is a need to do the same thing with ‘protocols’ - i.e. to define what you have to do to replicate/simulate
an experiment, and to analyse the results. An XML standard for this called SED-ML1 is being developed by the
COMBINE community and preliminary support for SED-ML has been implemented in OpenCOR in order to
allow precise and reproducible control over the OpenCOR simulation and graphical output (e.g., see Fig. 11.3).

The recent versions of OpenCOR (since early 2016) support exporting the Simulation view configuration to a
SED-ML file, which can then be read back into OpenCOR to reproduce a given simulation experiment, illustrated
in Fig. 16.1.

Fig. 16.1: Once you are happy with the configuration of the Simulation view in OpenCOR, clicking the SED-ML
button (highlighted) will prompt for a file to save the SED-ML document to. This document can be loaded back
into OpenCOR to reproduce the simulation, or shared with collaborators so they can reproduce the simulation.

Support for SED-ML will also facilitate the curation of models according to their functional behaviour under a
range of experimental scenarios. The key idea behind functional curation is that, when mathematical and compu-
tational models are being developed, a primary goal should be the continuous comparison of those models against
experimental data. When computational models are being re-used in new studies, it is similarly important to

1 The ‘Simulation Experiment Description Markup Language’: sed-ml.org

73

http://sed-ml.org

OpenCOR Tutorial, Release 0.18.0-alpha

check that they behave appropriately in the new situation to which you’re applying them. To achieve this goal, a
pre-requisite is to be able to replicate in-silico precisely the same protocols used in an experiment of interest. A
language for describing rich ‘virtual experiment’ protocols and software for running these on compatible models
is being developed in the Computational Biology Group at Oxford University2. An online system called Web
Lab3 is also being developed that supports definition of experimental protocols for cardiac electrophysiology, and
allows any CellML model to be tested under these protocols [CJ15]. This enables comparison of the behaviours of
cellular models under different experimental protocols: both to characterise a model’s behaviour, and comparing
hypotheses by seeing how different models react under the same protocol (Fig. 16.2 adapted from [CJ15]).

Fig. 16.2: A schematic of the way we organise model and protocol descriptions. Web Lab provides an interface to
a Model/Protocol Simulator, storing and displaying the results for cardiac electrophysiology models.

The Web Lab website provides tools for comparing how two different cardiac electrophysiology models behave
under the same experimental protocols. Note that Web Lab demonstration for CellML models of cardiac electro-
physiology is a prototype for a more general approach to defining simulation protocols for all CellML models.

2 travis.cs.ox.ac.uk/FunctionalCuration/about.html This initiative is led by Jonathan Cooper and Gary Mirams.
3 travis.cs.ox.ac.uk/FunctionalCuration.

74 Chapter 16. SED-ML, functional curation and Web Lab

http://travis.cs.ox.ac.uk/FunctionalCuration/about.html
http://travis.cs.ox.ac.uk/FunctionalCuration

CHAPTER

SEVENTEEN

USING OPENCOR WITH PYTHON (BETA)

CellML provides a good technology to create, describe, and share definitions of mathematical models. SED-ML
similarly provides a good technology to share reproducible descriptions of simulation experiments. Whenever
possible, it is best to make use of these standard formats to ensure the models and simulations are Findable,
Accessible, Interoperable, and Reusable.

Often in research projects, however, it is not always possible to describe the model and/or simulation that you
need to perform in these declarative formats. It also doesn’t make sense to try and standardise extensions or
modifications in such standards for potentially short-lived, one-off, research studies. Thus having access to a
flexible scripting environment that works in concert with a standards-based tool like OpenCOR allows users to
make use of standards when possible but with the flexibility to adapt as needed. OpenCOR supports this through
the integration of a Python interpreter within the OpenCOR application.

Python-enabled versions of OpenCOR are now relatively mature, but still undergoing extensive user testing and
implementation review. As such, this functionality is only available in special snapshot releases of OpenCOR
available from: https://github.com/dbrnz/opencor/releases. In this part of the tutorial we are going to be using
the 20 September 2019 snapshot of the Python-enabled OpenCOR. This particular release is distributed with the
following Python packages and their dependencies: numpy, scipy, and matplotlib.

Contents

• Using OpenCOR with Python (beta)

– Installation and setup

* Command line usage

* Jupyter notebooks

* Installing packages

– Basic usage

* Interactive example

– OpenCOR, CellML, and TensorFlow

* Getting prepared

* Training a machine learning model

75

https://github.com/dbrnz/opencor/releases

OpenCOR Tutorial, Release 0.18.0-alpha

17.1 Installation and setup

Python-enabled OpenCOR release can be installed as per the standard installation instructions. As this is an early
release of the new functionality, it is best to use one of the compressed archive releases which you can extract
locally rather than overwriting the stable system install. Once you have a Python-enabled release of OpenCOR
your main OpenCOR window should look similar to that shown in Fig. 17.1.

Fig. 17.1: OpenCOR application with default positioning of dockable windows including the Python console
(right-side, middle). As described in Install and Launch OpenCOR the dockable windows can be rearranged as
desired to suit your preferred layout.

17.1.1 Command line usage

In Python-enabled versions of OpenCOR the Python interpreter is embedded within the OpenCOR application.
Which means that in order to access the OpenCOR functionality you must use that Python within the OpenCOR
application rather than, for example, importing OpenCOR into your system Python. The Python console available
in the OpenCOR graphical user interface handles this for you allowing a seamless user experience. However, often
with Python-scripted simulation workflows it is nice to have the ability to run in a headless or batch mode. As
such, Python-enabled versions of OpenCOR come with some command line scripts to help provide the user avoid
the issues of making sure their Python scripts run using the correct Python interpreter.

In the top-level folder of your Python-enabled OpenCOR installation there is a script named run_python which
will depend on your operating system - on Windows for example, it is called run_python.bat. Running this
script without providing a Python script to execute will give you a standard Python console using the Python
embedded inside the OpenCOR application:

C:\Users\andre\OpenCOR-2019-09-20-Windows> run_python.bat
Python 3.7.4 (default, Sep 20 2019, 18:29:34) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

76 Chapter 17. Using OpenCOR with Python (beta)

OpenCOR Tutorial, Release 0.18.0-alpha

Providing a Python script will result in that script being interpreted by the interpreter embedded in the OpenCOR
application:

C:\Users\andre\OpenCOR-2019-09-20-Windows> run_python.bat hello_world.py
Hello World!

Command line arguments can be provided as usual following the script to be executed.

Warning: Due to the use of a Python interpreter embedded in a graphical user interface, there can be some
weirdness when trying to use UI toolkits from the command line, for example using matplotlib. This
works within the OpenCOR graphical user interface, but will fail when running from the command line.
Hence, it is best to currently use the command line version when working in a truly headless manner without
the need for a graphical user interface.

17.1.2 Jupyter notebooks

There is another mode to make use of the Python-enabled versions of OpenCOR and that is to access this func-
tionality via Jupyter notebooks. This is enabled via the run_jupyter helper script.

Todo: Write this section on Jupyter notebooks and OpenCOR.

17.1.3 Installing packages

As described above, the Python interpreter lives inside the OpenCOR application – making it difficult to access
in order to install packages or modules that are not distributed with the Python-enabled versions of OpenCOR. To
install packages using pip combined with the interactive Python console in the OpenCOR graphical user interface
is the way to go here, as shown below.

Jupyter QtConsole 4.5.5
Python 3.7.4 (default, Sep 20 2019, 18:29:34) [MSC v.1916 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: !pip install [options] package

17.2 Basic usage

The scope and capabilities of the Python interface to OpenCOR is still being refined, but here we focus on use
of the capabilities relevant to performing simulation experiments. Here we walk through the basic usage of using
Python to interact with OpenCOR in performing a simulation experiment.

As with any Python script, we must first import the OpenCOR module to expose the functionality that we desire.

import OpenCOR as oc

The main object that we are interested in dealing with is OpenCOR’s representation of a simulation. OpenCOR
is able to generate a default simulation for a CellML model or to load a SED-ML document which defines the
simulation experiment in detail. As the exposed simulation features are not yet complete, it is best to load a SED-
ML document giving full control over the simulation settings. The output plots defined in the SED-ML will also
be used when running the Python code via the interactive Python console in OpenCOR, but will be disregarded
when running via the command line mode.

17.2. Basic usage 77

OpenCOR Tutorial, Release 0.18.0-alpha

for a local file
simulation = oc.openSimulation('path/to/cellml/or/sedml')

OR for loading a remote file, e.g., from the model repository:
simulation = oc.openRemoteSimulation('URL/of/cellml/or/sedml')

OR if using the OpenCOR GUI and models are already loaded
simulation = oc.simulation() # The model in the currently active tab

For a given simulation, the data object houses all the relevant information and pointers to the OpenCOR internal
data representations.

data = simulation.data()

And the data object allows us to define the interval of interest for this simulation experiment.

data.setStartingPoint(start)
data.setEndingPoint(end)
data.setPointInterval(pointInterval)

As in the OpenCOR graphical user interface, constant parameters and initial values for the state variables can also
be set via the Python interface OpenCOR provides. When address specific variables in a model, they are mapped to
Python dictionaries using key’s comprising of component_name/variable_name. This provides a method
to uniquely identify all variables in a model.

Set constant parameter values
data.constants()['key'] = value

Set initial value for state variables
data.states()['key'] = value

Once you have the simulation defined that you would like to perform, it can be executed with the following.

simulation.run()

If you are using the OpenCOR graphical user interface and have define plots for the current simulation experiment,
then these will be displayed as usual during the execution of the simulation. The simulation results can also be
used directly in the Python script as shown below.

Access simulation results
results = simulation.results()

grab a specific state variable results
r1 = results.states()['key'].values() # Numpy array

grab a specific algebraic variable results
r2 = results.algebraic()['key'].values() # Numpy array

access the full datastore representation of the simulation results
ds = results.dataStore()
the dictionary or all result variables in the simulation
variables = ds.voiAndVariables()

grab a the results for a given variable
r3 = variables['key'].values() # Python list of values

When continuing a simulation from an existing state, the default behaviour is to continue from the current state.
The system can be reset to the initial state as shown below. As with using the OpenCOR graphical user interface,
this includes resetting any parameters or initial values that you may have set via the GUI or the Python interface.

78 Chapter 17. Using OpenCOR with Python (beta)

OpenCOR Tutorial, Release 0.18.0-alpha

Reset things if needed when re-running
simulation.resetParameters()
clear any existing results
simulation.clearResults()

17.2.1 Interactive example

In this example, we use the simple ODE model introduced earlier in the tutorial. We will be using the Python
console in the OpenCOR graphical user interface, working with the SED-ML loaded directly from the Physiome
Model Repository. As we are using the OpenCOR application, you should see the user interface updating in
response the to various Python commands. The following commands should be copy-pasted one at a time into the
Python console to observe the behaviour.

import OpenCOR as oc

simulation = oc.openRemoteSimulation('https://models.physiomeproject.org/workspace/
→˓25d/rawfile/60ac9389285471a704f2f4be6e1a8ba5cbf45d1a/Firstorder.sedml')
data = simulation.data()
data.setStartingPoint(0)
data.setEndingPoint(10)
data.setPointInterval(0.1)
simulation.run()

reset
simulation.resetParameters()
simulation.clearResults()

change parameter values
data.constants()['main/b'] = 5
data.states()['main/y'] = 2
simulation.run()

look at the simulation results
results = simulation.results()
y = results.states()['main/y'].values() # Numpy array
print(y)

ds = results.dataStore()
variables = ds.voiAndVariables()
y = variables['main/y'].values() # Python list of values
print(y)

a = variables['main/a'].values()
print(a)

In working through this example, you should be able to reproduce the results as seen in Fig. 5.2.

17.3 OpenCOR, CellML, and TensorFlow

TensorFlow is a popular end-to-end open source machine learning platform in Python. Together with the Python-
enabled OpenCOR capabilities and CellML itself, this opens up a new world of application of machine learning
in computational physiology. This is a very new application that we are still actively developing, but here we give
a brief demonstration that might help show what could be achieved.

17.3. OpenCOR, CellML, and TensorFlow 79

https://www.tensorflow.org/

OpenCOR Tutorial, Release 0.18.0-alpha

17.3.1 Getting prepared

The first step is to ensure that you have TensorFlow installed. As described above, Python packages need to be
installed in the Python embedded inside OpenCOR. We are using here TensorFlow version 1.15, which can be
installed using the OpenCOR Python console with the following command. (TensorFlow 2.0 will not work with
this demonstration.)

In [1]: !pip install tensorflow==1.15

We have prepared a couple of Python scripts that you can use for this demonstration. The first is MPL.py, which
is a TensorFlow-based script to construct a simple MLP (fully-connected feed-forward network or MultiLayer
Perceptron) and trains it with a given dataset. The second is train-tf-model.py, which will first generate
a set of training data using the O’Hara & Rudy cardiac electrophysiology model, which has been encoded in the
CellML format as an extension of this model in the Physiome Model Repository. Both files should be downloaded
into the same folder on your local machine.

Finally, in the OpenCOR Python console we need to make sure the plotting happens in-place rather than trying to
bring windows. This is done by exectuing the following command in the OpenCOR Python console.

In [1]: %matplotlib inline

17.3.2 Training a machine learning model

The train-tf-model.py script is the one that contains the definition of the workflow we are demonstrating
here. It is easiest to open this file in your preferred Python editor and follow through the script, with the comments
attempting to explain what is happening.

This script can be run in the OpenCOR Python console by first making sure the console is looking at the correct
folder,

In [1]: %cd path/to/folder/with/downloaded/scripts

and then running the training script as follows.

In [1]: %run train-tf-model.py

All going well, this should result in something similar to Fig. 17.2.

80 Chapter 17. Using OpenCOR with Python (beta)

https://www.ncbi.nlm.nih.gov/pubmed/21637795
https://models.physiomeproject.org/e/4eb

OpenCOR Tutorial, Release 0.18.0-alpha

Fig. 17.2: The result of training a TensorFlow machine learning model using data from a simulation of a CellML
model in OpenCOR and then comparing the ML-model predictions to the actual simulation results.

You should now be able to play around with the training script to see what happens as you change, for example,
the stimulation period or simulation duration.

17.3. OpenCOR, CellML, and TensorFlow 81

OpenCOR Tutorial, Release 0.18.0-alpha

82 Chapter 17. Using OpenCOR with Python (beta)

CHAPTER

EIGHTEEN

SPEED COMPARISONS WITH MATLAB

Solution speed is important for complex computational models and here we compare the performance of Open-
COR with MATLAB1. Nine representative CellML models were chosen from the PMR model repository. For the
MATLAB tests we used the MATLAB code, generated automatically from CellML, that is available on the PMR
site. These comparisons are based on using the default solvers (listed below) available in the two packages.

18.1 Testing environment

• MacBook Pro (Retina, Mid 2012).

• Processor: 2.6 GHz Intel Core i7.

• Memory: 16 GB 1600 MHz DDR3.

• Operating system: OS X Yosemite 10.10.3.

18.2 OpenCOR

• Version: 0.4.1.

• Solver: CVODE with its default settings, except for its Maximum step parameter, which is set to the model’s
stimulation duration, if needed.

18.3 MATLAB

• Version: R2013a.

• Solver: ode15s (i.e. a solver suitable for stiff problems and which has low to medium order of accuracy)
with both its RelTol and AbsTol parameters set to 1e-7 and its MaxStep parameter set to the stimulation
duration, if needed.

1 www.mathworks.com/products/matlab

83

http://www.mathworks.com/products/matlab

OpenCOR Tutorial, Release 0.18.0-alpha

18.4 Testing protocol

• Run a model for a given simulation duration.

• Generate simulation data every milliseconds.

• Only keep track of all the simulation data (i.e. no graphical output).

• Run a model 7 times, discard the 2 slowest runs (to account for unpredictable slowdowns of the testing
machine) and average the resulting computational times.

• Computational times are obtained directly from OpenCOR and MATLAB (through a couple of calls to
cputime in the case of MATLAB).

18.5 Results

CellML model (from PMR on
18/6/2015)

Dura-
tion
(s)

OpenCOR
time (s)

MATLAB
time (s)

Time ratio (MAT-
LAB/OpenCOR)

Bondarenko et al. 2004 10 1.16 140.14 121
Courtemanche et al. 1998 100 0.998 45.720 46
Faber & Rudy 2000 50 0.717 29.010 40
Garny et al. 2003 100 0.996 48.180 48
Luo & Rudy 1991 200 0.666 70.070 105
Noble 1962 1000 1.42 310.02 218
Noble et al. 1998 100 0.834 42.010 50
Nygren et al. 1998 100 0.824 31.370 38
ten Tusscher & Panfilov 2006 100 0.969 59.080 61

*The value of membrane.stim_end was increased so as to get action potentials for the duration of the simulation

18.6 Conclusions

For this range of tests, OpenCOR is between 38 and 218 times faster than MATLAB. A more extensive evaluation
of these results is available on GitHub2.

2 https://github.com/opencor/speedcomparison. These tests were carried out by Alan Garny.

84 Chapter 18. Speed comparisons with MATLAB

http://models.cellml.org/e/41
http://models.cellml.org/exposure/0e03bbe01606be5811691f9d5de10b65
http://models.cellml.org/exposure/55643f2114a2a463ada007deb9fc3913
http://models.cellml.org/exposure/d71105df45dd7030b3c99b2b1e95b8c0
http://models.cellml.org/exposure/2d2ce7737b42a4f72d6bf8b67f6eb5a2
http://models.cellml.org/exposure/812eeafbc8ebe97bef435340c80cfcce
http://models.cellml.org/exposure/a40c4434423c0436e2789a2d457b7ab2
http://models.cellml.org/exposure/ad761ce160f3b4077bbae7a004c229e3
http://models.cellml.org/exposure/a7179d94365ff0c9c0e6eb7c6a787d3d
https://github.com/opencor/speedcomparison

CHAPTER

NINETEEN

REFERENCES

Todo:

• Colour background of CellML Text

• Annotate screen shots with svg for same look and feel

• CellML Text code is not highlighted for all display situations, currently only in environments that are using
an adapted version of pygments

• Tidy up citations and BiBTeX source (possibly use Zotero to manage?)

• Make horizontal line for footnotes only visible in html output

• Check external references markup

• Consider a more suitable theme (may require changes to an existing one to get a good result)

• Must check over output (and models) from screenshots to make sure that it matches the current release of
OpenCOR, especially against running experiments for the first time.

85

OpenCOR Tutorial, Release 0.18.0-alpha

86 Chapter 19. References

BIBLIOGRAPHY

[APJ15] Garny A. and Hunter P.J. Opencor: a modular and interoperable approach to computational biology.
Frontiers in Physiology, 2015.

[AYY] Non A. Www.biomodels.org <http://www.biomodels.org>. YYYY.

[AAF52] Hodgkin AL and Huxley AF. A quantitative description of membrane current and its application to
conduction and excitation in nerve. Journal of Physiology, 117:500–544, 1952.

[CPJ09] Christie R. Nielsen P.M.F. Blackett S. Bradley C. and Hunter P.J. Fieldml: concepts and implementa-
tion. Philosophical Transactions of the Royal Society (London), A367(1895):1869–1884, 2009.

[CMEJ08] Hunter PJ Cooling M and Crampin EJ. Modeling biological modularity with cellml. IET Systems
Biology, 2:73–79, 2008.

[CJ15] Waltemath D. Cooper J, Vik JO. A call for virtual experiments: accelerating the scientific process.
Progress in Biophysics and Molecular Biolog, 117:99–106, 2015.

[D62] Noble D. A modification of the hodgkin-huxley equations applicable to purkinje fibre action and pace-
maker potentials. Journal of Physiology, 160:317–352, 1962.

[DPPJ03] Cuellar A.A. Lloyd C.M. Nielsen P.F. Halstead M.D.B. Bullivant D.P. Nickerson D.P. and Hunter P.J.
An overview of cellml 1.1, a biological model description language. SIMULATION: Transactions of
the Society for Modeling and Simulation, 79(12):740–747, 2003.

[ea13] Hunter P.J. et al. A vision and strategy for the virtual physiological human: 2012 update. Interface
Focus, 2013.

[eal11] Yu T. et al. The physiome model repository 2. Bioinformatics, 27:743–744, 2011.

[J97] Wigglesworth J. Energy and life. Taylor & Francis Ltd, 1997.

[JH02] Thompson JMT and Stewart HB. Nonlinear dynamics and chaos. Wiley, 2002.

[LCPF08] Hunter PJ Lloyd CM, Lawson JR and Nielsen PF. The cellml model repository. Bioinformatics,
24:2122–2123, 2008.

[P13] Britten R.D. Christie G.R. Little C. Miller A.K. Bradley C. Wu A. Yu T. Hunter P.J. Nielsen P. Fieldml,
a proposed open standard for the physiome project for mathematical model representation. Med. Biol.
Eng. Comput., 51(11):1191–1207, 2013.

[PJ04] Hunter P.J. The iups physiome project: a framework for computational physiology. Progress in Bio-
physics and Molecular Biology, 85:551–569, 2004.

[VarYY] Various. See www.cellml.org/about/publications for a more extensive list of publications on cellml
and opencor. Various, YYYY.

87

	Background to the VPH-Physiome project
	Install and Launch OpenCOR
	Create and run a simple CellML model: editing and simulation
	Open an existing CellML file from a local directory or the Physiome Model Repository
	A simple first order ODE
	The Lorenz attractor
	A model of ion channel gating and current: Introducing CellML units
	A model of the potassium channel: Introducing CellML components and connections
	A model of the sodium channel: Introducing CellML encapsulation and interfaces
	A model of the nerve action potential: Introducing CellML imports
	A model of the cardiac action potential: Importing units and parameters
	Code generation
	Model annotation
	The Physiome Model Repository and the link to bioinformatics
	Using PMR with OpenCOR
	SED-ML, functional curation and Web Lab
	Using OpenCOR with Python (beta)
	Speed comparisons with MATLAB
	References
	Bibliography

