In order to facilitate the import of this tubular membrane model by the main Pasek 2008 model I will encapsulate the current model in a top component called "tubular_membrane". Catherine Lloyd tubular_membrane top component which encapsulates the entire tubular membrane model $\mathrm{E_K}=\frac{RT}{F}\ln \left(\frac{\mathrm{K_t}}{\mathrm{K_i}}\right)\mathrm{i_Kto_t}=\mathrm{g_Ktot}r(as+b\mathrm{s_slow})(\mathrm{Vm_t}-\mathrm{E_K})\mathrm{g_Ktot}=\mathrm{g_Kto}(\mathrm{Sms}+\mathrm{Smt})\mathrm{fKtot}$ $\mathrm{i_Kss_t}=\mathrm{g_Ksst}\mathrm{r_ss}\mathrm{s_ss}(\mathrm{Vm_t}-\mathrm{E_K})\mathrm{g_Ksst}=\mathrm{g_Kss}(\mathrm{Sms}+\mathrm{Smt})\mathrm{fKsst}$ $\mathrm{i_BNa_t}=\mathrm{g_B_Nat}(\mathrm{Vm_t}-\mathrm{E_Na})\mathrm{i_BCa_t}=\mathrm{g_B_Cat}(\mathrm{Vm_t}-\mathrm{E_Ca})\mathrm{i_BK_t}=\mathrm{g_B_Kt}(\mathrm{Vm_t}-\mathrm{E_K})\mathrm{i_B_t}=\mathrm{i_BNa_t}+\mathrm{i_BCa_t}+\mathrm{i_BK_t}\mathrm{g_B_Cat}=\mathrm{g_B_Ca}(\mathrm{Sms}+\mathrm{Smt})\mathrm{fCabt}\mathrm{g_B_Nat}=\mathrm{g_B_Na}(\mathrm{Sms}+\mathrm{Smt})\mathrm{fNabt}\mathrm{g_B_Kt}=\mathrm{g_B_K}(\mathrm{Sms}+\mathrm{Smt})\mathrm{fKbt}$