Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 2 entries in the algebraic variable array.
   There are a total of 1 entries in each of the rate and state variable arrays.
   There are a total of 17 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (msec).
 * CONSTANTS[0] is Ca_cyt in component general_parameters (uM).
 * CONSTANTS[1] is Ca_NSR in component general_parameters (uM).
 * CONSTANTS[2] is CaMKII_reg in component general_parameters (dimensionless).
 * CONSTANTS[3] is SERCA_TOT in component serca_parameters (uM).
 * CONSTANTS[4] is PSR in component serca_parameters (dimensionless).
 * CONSTANTS[5] is Kmf_PLBKO in component serca_parameters (uM).
 * CONSTANTS[6] is Kmf_PLB in component serca_parameters (uM).
 * CONSTANTS[7] is Kmr_PLBKO in component serca_parameters (uM).
 * CONSTANTS[8] is Kmr_PLB in component serca_parameters (uM).
 * CONSTANTS[12] is EC_50_fwd in component serca_parameters (uM).
 * CONSTANTS[10] is EC_50_rev in component serca_parameters (uM).
 * CONSTANTS[15] is k_cyt_serca in component transition_parameters (per_msec_per_uM2).
 * CONSTANTS[16] is k_serca_cyt in component transition_parameters (per_msec).
 * CONSTANTS[11] is k_serca_sr in component transition_parameters (per_msec).
 * CONSTANTS[13] is k_sr_serca in component transition_parameters (per_msec_per_uM2).
 * CONSTANTS[14] is br_cyt_serca in component transition_parameters (per_msec_per_uM2).
 * CONSTANTS[9] is br_serca_sr in component transition_parameters (per_msec).
 * ALGEBRAIC[0] is J_cyt_serca in component calcium_fluxes (uM_per_msec).
 * ALGEBRAIC[1] is J_serca_sr in component calcium_fluxes (uM_per_msec).
 * STATES[0] is Ca_serca in component calcium_bound_serca (uM).
 * RATES[0] is d/dt Ca_serca in component calcium_bound_serca (uM).
 * There are a total of 0 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 0.25;
CONSTANTS[1] = 760;
CONSTANTS[2] = 0;
CONSTANTS[3] = 47;
CONSTANTS[4] = 1;
CONSTANTS[5] = 0.15;
CONSTANTS[6] = 0.15;
CONSTANTS[7] = 2500;
CONSTANTS[8] = 1110;
CONSTANTS[9] = 0.00625;
STATES[0] = 12;
CONSTANTS[10] = CONSTANTS[7] -  CONSTANTS[8]*CONSTANTS[4];
CONSTANTS[11] =  CONSTANTS[9]*(1.00000+ 0.700000*CONSTANTS[2]);
CONSTANTS[12] =  (CONSTANTS[5]+ CONSTANTS[6]*CONSTANTS[4])*(1.00000+ 0.270000*CONSTANTS[2]);
CONSTANTS[13] = CONSTANTS[9]/pow(CONSTANTS[10], 2.00000);
CONSTANTS[14] =  1000.00*CONSTANTS[9];
CONSTANTS[15] =  CONSTANTS[14]*(1.00000+ 0.700000*CONSTANTS[2]);
CONSTANTS[16] =  pow(CONSTANTS[12], 2.00000)*CONSTANTS[14];
RATES[0] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - ALGEBRAIC[0] - ALGEBRAIC[1];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] =  CONSTANTS[15]*pow(CONSTANTS[0], 2.00000)*(CONSTANTS[3] - STATES[0]) -  CONSTANTS[16]*STATES[0];
ALGEBRAIC[1] =  CONSTANTS[11]*STATES[0] -  CONSTANTS[13]*pow(CONSTANTS[1], 2.00000)*(CONSTANTS[3] - STATES[0]);
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
}