Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 45 entries in the algebraic variable array.
   There are a total of 17 entries in each of the rate and state variable arrays.
   There are a total of 59 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[3] is Cm in component membrane (microF).
 * ALGEBRAIC[5] is i_K1 in component time_independent_potassium_current (nanoA).
 * ALGEBRAIC[31] is i_to in component transient_outward_current (nanoA).
 * ALGEBRAIC[7] is i_K in component time_dependent_potassium_current (nanoA).
 * ALGEBRAIC[21] is i_Ca_L_K in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[12] is i_b_K in component potassium_background_current (nanoA).
 * ALGEBRAIC[34] is i_NaK in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[13] is i_Na in component fast_sodium_current (nanoA).
 * ALGEBRAIC[19] is i_b_Na in component sodium_background_current (nanoA).
 * ALGEBRAIC[22] is i_Ca_L_Na in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[35] is i_NaCa in component sodium_calcium_exchanger (nanoA).
 * ALGEBRAIC[20] is i_Ca_L_Ca in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[30] is i_b_Ca in component calcium_background_current (nanoA).
 * ALGEBRAIC[0] is i_Stim in component membrane (nanoA).
 * CONSTANTS[4] is stim_start in component membrane (second).
 * CONSTANTS[5] is stim_end in component membrane (second).
 * CONSTANTS[6] is stim_period in component membrane (second).
 * CONSTANTS[7] is stim_duration in component membrane (second).
 * CONSTANTS[8] is stim_amplitude in component membrane (nanoA).
 * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt).
 * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt).
 * ALGEBRAIC[3] is E_Ca in component reversal_potentials (millivolt).
 * ALGEBRAIC[4] is E_mh in component reversal_potentials (millivolt).
 * CONSTANTS[9] is K_o in component extracellular_potassium_concentration (millimolar).
 * CONSTANTS[10] is Na_o in component extracellular_sodium_concentration (millimolar).
 * STATES[1] is K_i in component intracellular_potassium_concentration (millimolar).
 * STATES[2] is Na_i in component intracellular_sodium_concentration (millimolar).
 * CONSTANTS[11] is Ca_o in component extracellular_calcium_concentration (millimolar).
 * STATES[3] is Ca_i in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[12] is K_mk1 in component time_independent_potassium_current (millimolar).
 * CONSTANTS[13] is g_K1 in component time_independent_potassium_current (microS).
 * ALGEBRAIC[6] is I_K in component time_dependent_potassium_current (nanoA).
 * CONSTANTS[14] is i_K_max in component time_dependent_potassium_current (nanoA).
 * STATES[4] is x in component time_dependent_potassium_current_x_gate (dimensionless).
 * ALGEBRAIC[8] is E0xa in component time_dependent_potassium_current_x_gate (millivolt).
 * ALGEBRAIC[10] is E0xb in component time_dependent_potassium_current_x_gate (millivolt).
 * ALGEBRAIC[9] is alpha_x in component time_dependent_potassium_current_x_gate (per_second).
 * ALGEBRAIC[11] is beta_x in component time_dependent_potassium_current_x_gate (per_second).
 * CONSTANTS[15] is g_bk in component potassium_background_current (microS).
 * CONSTANTS[16] is g_Na in component fast_sodium_current (microS).
 * STATES[5] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[6] is h in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[15] is alpha_m in component fast_sodium_current_m_gate (per_second).
 * ALGEBRAIC[16] is beta_m in component fast_sodium_current_m_gate (per_second).
 * CONSTANTS[17] is delta_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[14] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[17] is alpha_h in component fast_sodium_current_h_gate (per_second).
 * ALGEBRAIC[18] is beta_h in component fast_sodium_current_h_gate (per_second).
 * CONSTANTS[18] is shift_h in component fast_sodium_current_h_gate (millivolt).
 * CONSTANTS[19] is g_bna in component sodium_background_current (microS).
 * ALGEBRAIC[23] is i_Ca_L in component L_type_Ca_channel (nanoA).
 * CONSTANTS[20] is P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar).
 * CONSTANTS[21] is P_CaK in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[22] is P_CaNa in component L_type_Ca_channel (dimensionless).
 * STATES[7] is d in component L_type_Ca_channel_d_gate (dimensionless).
 * STATES[8] is f in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[25] is alpha_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[26] is beta_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[24] is E0_d in component L_type_Ca_channel_d_gate (millivolt).
 * CONSTANTS[23] is speed_d in component L_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[28] is alpha_f in component L_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[29] is beta_f in component L_type_Ca_channel_f_gate (per_second).
 * CONSTANTS[24] is speed_f in component L_type_Ca_channel_f_gate (dimensionless).
 * CONSTANTS[25] is delta_f in component L_type_Ca_channel_f_gate (millivolt).
 * ALGEBRAIC[27] is E0_f in component L_type_Ca_channel_f_gate (millivolt).
 * CONSTANTS[26] is g_bca in component calcium_background_current (microS).
 * CONSTANTS[27] is g_to in component transient_outward_current (microS).
 * CONSTANTS[28] is g_tos in component transient_outward_current (dimensionless).
 * STATES[9] is s in component transient_outward_current_s_gate (dimensionless).
 * STATES[10] is r in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[32] is alpha_s in component transient_outward_current_s_gate (per_second).
 * ALGEBRAIC[33] is beta_s in component transient_outward_current_s_gate (per_second).
 * CONSTANTS[29] is i_NaK_max in component sodium_potassium_pump (nanoA).
 * CONSTANTS[30] is K_mK in component sodium_potassium_pump (millimolar).
 * CONSTANTS[31] is K_mNa in component sodium_potassium_pump (millimolar).
 * CONSTANTS[32] is k_NaCa in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[33] is n_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[34] is d_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[35] is gamma in component sodium_calcium_exchanger (dimensionless).
 * ALGEBRAIC[37] is i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[56] is K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * ALGEBRAIC[36] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[36] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[37] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * CONSTANTS[38] is K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[39] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[40] is beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * STATES[11] is Ca_up in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[38] is i_trans in component calcium_translocation (millimolar_per_second).
 * STATES[12] is Ca_rel in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[44] is i_rel in component calcium_release (millimolar_per_second).
 * ALGEBRAIC[39] is VoltDep in component calcium_release (dimensionless).
 * ALGEBRAIC[40] is RegBindSite in component calcium_release (dimensionless).
 * ALGEBRAIC[41] is ActRate in component calcium_release (per_second).
 * ALGEBRAIC[42] is InactRate in component calcium_release (per_second).
 * CONSTANTS[41] is K_leak_rate in component calcium_release (per_second).
 * CONSTANTS[42] is K_m_Ca in component calcium_release (millimolar).
 * CONSTANTS[43] is K_m_rel in component calcium_release (per_second).
 * ALGEBRAIC[43] is PrecFrac in component calcium_release (dimensionless).
 * STATES[13] is ActFrac in component calcium_release (dimensionless).
 * STATES[14] is ProdFrac in component calcium_release (dimensionless).
 * CONSTANTS[58] is V_i in component intracellular_calcium_concentration (micrometre3).
 * STATES[15] is Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * STATES[16] is Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[44] is Calmod in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[45] is Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[46] is alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[47] is beta_Calmod in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[48] is alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[49] is beta_Trop in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[50] is radius in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[51] is length in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[55] is V_Cell in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[57] is V_i_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[52] is V_rel_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[53] is V_e_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[54] is V_up_ratio in component intracellular_calcium_concentration (dimensionless).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[4] is d/dt x in component time_dependent_potassium_current_x_gate (dimensionless).
 * RATES[5] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[6] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[7] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless).
 * RATES[8] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless).
 * RATES[9] is d/dt s in component transient_outward_current_s_gate (dimensionless).
 * RATES[10] is d/dt r in component transient_outward_current_r_gate (dimensionless).
 * RATES[13] is d/dt ActFrac in component calcium_release (dimensionless).
 * RATES[14] is d/dt ProdFrac in component calcium_release (dimensionless).
 * RATES[2] is d/dt Na_i in component intracellular_sodium_concentration (millimolar).
 * RATES[1] is d/dt K_i in component intracellular_potassium_concentration (millimolar).
 * RATES[3] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar).
 * RATES[15] is d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * RATES[16] is d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * RATES[11] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar).
 * RATES[12] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar).
 * There are a total of 7 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -93.7400119196694;
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 9.5e-5;
CONSTANTS[4] = 0.1;
CONSTANTS[5] = 100;
CONSTANTS[6] = 1;
CONSTANTS[7] = 0.002;
CONSTANTS[8] = -6;
CONSTANTS[9] = 4;
CONSTANTS[10] = 140;
STATES[1] = 136.604284305878;
STATES[2] = 7.50547214142684;
CONSTANTS[11] = 2;
STATES[3] = 1.34858164771406e-5;
CONSTANTS[12] = 10;
CONSTANTS[13] = 1;
CONSTANTS[14] = 1;
STATES[4] = 0.00938586574433011;
CONSTANTS[15] = 0.0006;
CONSTANTS[16] = 2.5;
STATES[5] = 0.00143405969732302;
STATES[6] = 0.995414125415674;
CONSTANTS[17] = 1e-5;
CONSTANTS[18] = 0;
CONSTANTS[19] = 0.0006;
CONSTANTS[20] = 0.25;
CONSTANTS[21] = 0.002;
CONSTANTS[22] = 0.01;
STATES[7] = 1.91821833548952e-8;
STATES[8] = 0.999999956287155;
CONSTANTS[23] = 3;
CONSTANTS[24] = 0.5;
CONSTANTS[25] = 0.0001;
CONSTANTS[26] = 0.00025;
CONSTANTS[27] = 0.005;
CONSTANTS[28] = 0;
STATES[9] = 0.997644968939185;
STATES[10] = 1.60424507876553e-8;
CONSTANTS[29] = 0.7;
CONSTANTS[30] = 1;
CONSTANTS[31] = 40;
CONSTANTS[32] = 0.0005;
CONSTANTS[33] = 3;
CONSTANTS[34] = 0;
CONSTANTS[35] = 0.5;
CONSTANTS[36] = 0.0003;
CONSTANTS[37] = 0.4;
CONSTANTS[38] = 0.5;
CONSTANTS[39] = 0.4;
CONSTANTS[40] = 0.03;
STATES[11] = 0.59333810408885;
STATES[12] = 0.591323137897127;
CONSTANTS[41] = 0;
CONSTANTS[42] = 0.0005;
CONSTANTS[43] = 250;
STATES[13] = 0.00267040300939318;
STATES[14] = 0.522949441962453;
STATES[15] = 0.000524570960945961;
STATES[16] = 0.00033477224086766;
CONSTANTS[44] = 0.02;
CONSTANTS[45] = 0.05;
CONSTANTS[46] = 100000;
CONSTANTS[47] = 50;
CONSTANTS[48] = 100000;
CONSTANTS[49] = 200;
CONSTANTS[50] = 0.012;
CONSTANTS[51] = 0.074;
CONSTANTS[52] = 0.1;
CONSTANTS[53] = 0.4;
CONSTANTS[54] = 0.01;
CONSTANTS[55] =  3.14159*pow(CONSTANTS[50], 2.00000)*CONSTANTS[51];
CONSTANTS[56] = ( CONSTANTS[36]*CONSTANTS[37])/CONSTANTS[38];
CONSTANTS[57] = ((1.00000 - CONSTANTS[53]) - CONSTANTS[54]) - CONSTANTS[52];
CONSTANTS[58] =  CONSTANTS[55]*CONSTANTS[57];
RATES[0] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[2] = 0.1001;
RATES[1] = 0.1001;
RATES[3] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[5]+ALGEBRAIC[31]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[34]+ALGEBRAIC[13]+ALGEBRAIC[19]+ALGEBRAIC[22]+ALGEBRAIC[35]+ALGEBRAIC[20]+ALGEBRAIC[21]+ALGEBRAIC[30]);
resid[1] = RATES[4] -  ALGEBRAIC[9]*(1.00000 - STATES[4]) -  ALGEBRAIC[11]*STATES[4];
resid[2] = RATES[5] -  ALGEBRAIC[15]*(1.00000 - STATES[5]) -  ALGEBRAIC[16]*STATES[5];
resid[3] = RATES[6] -  ALGEBRAIC[17]*(1.00000 - STATES[6]) -  ALGEBRAIC[18]*STATES[6];
resid[4] = RATES[7] -  CONSTANTS[23]*( ALGEBRAIC[25]*(1.00000 - STATES[7]) -  ALGEBRAIC[26]*STATES[7]);
resid[5] = RATES[8] -  CONSTANTS[24]*( ALGEBRAIC[28]*(1.00000 - STATES[8]) -  ALGEBRAIC[29]*STATES[8]);
resid[6] = RATES[9] -  ALGEBRAIC[32]*(1.00000 - STATES[9]) -  ALGEBRAIC[33]*STATES[9];
resid[7] = RATES[10] -  333.000*(1.00000/(1.00000+exp(- (STATES[0]+4.00000)/5.00000)) - STATES[10]);
resid[8] = RATES[13] -  ALGEBRAIC[43]*ALGEBRAIC[41] -  STATES[13]*ALGEBRAIC[42];
resid[9] = RATES[14] -  STATES[13]*ALGEBRAIC[42] -  1.00000*STATES[14];
resid[10] = RATES[2] -  (- 1.00000/( 1.00000*CONSTANTS[58]*CONSTANTS[2]))*(ALGEBRAIC[13]+ALGEBRAIC[19]+ 3.00000*ALGEBRAIC[34]+ 3.00000*ALGEBRAIC[35]+ALGEBRAIC[22]);
resid[11] = RATES[1] -  (- 1.00000/( 1.00000*CONSTANTS[58]*CONSTANTS[2]))*((ALGEBRAIC[5]+ALGEBRAIC[7]+ALGEBRAIC[21]+ALGEBRAIC[31]+ALGEBRAIC[12]) -  2.00000*ALGEBRAIC[34]);
resid[12] = RATES[3] - ((( (- 1.00000/( 2.00000*1.00000*CONSTANTS[58]*CONSTANTS[2]))*((ALGEBRAIC[20]+ALGEBRAIC[30]) -  2.00000*ALGEBRAIC[35])+( ALGEBRAIC[44]*CONSTANTS[52])/CONSTANTS[57]) - RATES[15]) - RATES[16]) - ALGEBRAIC[37];
resid[13] = RATES[11] -  (CONSTANTS[57]/CONSTANTS[54])*ALGEBRAIC[37] - ALGEBRAIC[38];
resid[14] = RATES[12] -  (CONSTANTS[54]/CONSTANTS[52])*ALGEBRAIC[38] - ALGEBRAIC[44];
resid[15] = RATES[15] -  CONSTANTS[46]*STATES[3]*(CONSTANTS[44] - STATES[15]) -  CONSTANTS[47]*STATES[15];
resid[16] = RATES[16] -  CONSTANTS[48]*STATES[3]*(CONSTANTS[45] - STATES[16]) -  CONSTANTS[49]*STATES[16];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[23] = ALGEBRAIC[20]+ALGEBRAIC[21]+ALGEBRAIC[22];
ALGEBRAIC[39] = exp( 0.0800000*(STATES[0] - 40.0000));
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[2] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[9]/STATES[1]);
ALGEBRAIC[5] = ( (( CONSTANTS[13]*CONSTANTS[9])/(CONSTANTS[9]+CONSTANTS[12]))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( ((STATES[0] - ALGEBRAIC[2]) - 10.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[6] = ( CONSTANTS[14]*(STATES[1] -  CONSTANTS[9]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/140.000;
ALGEBRAIC[7] =  STATES[4]*ALGEBRAIC[6];
ALGEBRAIC[8] = STATES[0]+50.0000;
ALGEBRAIC[9] = ( 0.500000*exp( 0.0826000*ALGEBRAIC[8]))/(1.00000+exp( 0.0570000*ALGEBRAIC[8]));
ALGEBRAIC[10] = STATES[0]+20.0000;
ALGEBRAIC[11] = ( 1.30000*exp( - 0.0600000*ALGEBRAIC[10]))/(1.00000+exp( - 0.0400000*ALGEBRAIC[10]));
ALGEBRAIC[12] =  CONSTANTS[15]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[4] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[10]+ 0.120000*CONSTANTS[9])/(STATES[2]+ 0.120000*STATES[1]));
ALGEBRAIC[13] =  CONSTANTS[16]*pow(STATES[5], 3.00000)*STATES[6]*(STATES[0] - ALGEBRAIC[4]);
ALGEBRAIC[14] = STATES[0]+41.0000;
ALGEBRAIC[15] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[14])/(1.00000 - exp( - 0.100000*ALGEBRAIC[14])));
ALGEBRAIC[16] =  8000.00*exp( - 0.0560000*(STATES[0]+66.0000));
ALGEBRAIC[17] =  20.0000*exp( - 0.125000*((STATES[0]+75.0000) - CONSTANTS[18]));
ALGEBRAIC[18] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*((STATES[0]+75.0000) - CONSTANTS[18])));
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[2]);
ALGEBRAIC[19] =  CONSTANTS[19]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[20] =  ((( 4.00000*CONSTANTS[20]*STATES[7]*STATES[8]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[21] =  ((( CONSTANTS[21]*CONSTANTS[20]*STATES[7]*STATES[8]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[9]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[22] =  ((( CONSTANTS[22]*CONSTANTS[20]*STATES[7]*STATES[8]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[24] = (STATES[0]+24.0000) - 5.00000;
ALGEBRAIC[25] = (CONDVAR[4]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[24])/(1.00000 - exp(- ALGEBRAIC[24]/4.00000)));
ALGEBRAIC[26] = (CONDVAR[5]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[24])/(exp(ALGEBRAIC[24]/10.0000) - 1.00000));
ALGEBRAIC[27] = STATES[0]+34.0000;
ALGEBRAIC[28] = (CONDVAR[6]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[27])/(exp(ALGEBRAIC[27]/4.00000) - 1.00000));
ALGEBRAIC[29] = 50.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000));
ALGEBRAIC[3] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[11]/STATES[3]);
ALGEBRAIC[30] =  CONSTANTS[26]*(STATES[0] - ALGEBRAIC[3]);
ALGEBRAIC[31] =  CONSTANTS[27]*(CONSTANTS[28]+ STATES[9]*(1.00000 - CONSTANTS[28]))*STATES[10]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[32] =  0.0330000*exp(- STATES[0]/17.0000);
ALGEBRAIC[33] = 33.0000/(1.00000+exp( - 0.125000*(STATES[0]+10.0000)));
ALGEBRAIC[34] = ( (( CONSTANTS[29]*CONSTANTS[9])/(CONSTANTS[30]+CONSTANTS[9]))*STATES[2])/(CONSTANTS[31]+STATES[2]);
ALGEBRAIC[35] = ( CONSTANTS[32]*( exp(( CONSTANTS[35]*(CONSTANTS[33] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[33])*CONSTANTS[11] -  exp(( (CONSTANTS[35] - 1.00000)*(CONSTANTS[33] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[10], CONSTANTS[33])*STATES[3]))/( (1.00000+ CONSTANTS[34]*( STATES[3]*pow(CONSTANTS[10], CONSTANTS[33])+ CONSTANTS[11]*pow(STATES[2], CONSTANTS[33])))*(1.00000+STATES[3]/0.00690000));
ALGEBRAIC[36] = STATES[3]+ STATES[11]*CONSTANTS[56]+ CONSTANTS[36]*CONSTANTS[37]+CONSTANTS[36];
ALGEBRAIC[37] =  (STATES[3]/ALGEBRAIC[36])*CONSTANTS[39] -  (( STATES[11]*CONSTANTS[56])/ALGEBRAIC[36])*CONSTANTS[40];
ALGEBRAIC[38] =  50.0000*(STATES[11] - STATES[12]);
ALGEBRAIC[40] = pow(STATES[3]/(STATES[3]+CONSTANTS[42]), 2.00000);
ALGEBRAIC[41] =  500.000*ALGEBRAIC[40];
ALGEBRAIC[42] = 60.0000+ 500.000*ALGEBRAIC[40];
ALGEBRAIC[43] = (1.00000 - STATES[13]) - STATES[14];
ALGEBRAIC[44] =  ( pow(STATES[13]/(STATES[13]+0.250000), 2.00000)*CONSTANTS[43]+CONSTANTS[41])*STATES[12];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[4];
CONDVAR[1] = VOI - CONSTANTS[5];
CONDVAR[2] = ((VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7];
CONDVAR[3] = fabs(ALGEBRAIC[14]) - CONSTANTS[17];
CONDVAR[4] = fabs(ALGEBRAIC[24]) - 0.000100000;
CONDVAR[5] = fabs(ALGEBRAIC[24]) - 0.000100000;
CONDVAR[6] = fabs(ALGEBRAIC[27]) - CONSTANTS[25];
}