Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 78 entries in the algebraic variable array.
   There are a total of 27 entries in each of the rate and state variable arrays.
   There are a total of 61 entries in the constant variable array.
 */
/*
 * VOI is time in component Environment (millisecond).
 * CONSTANTS[0] is R in component Environment (millijoule_per_mole_kelvin).
 * CONSTANTS[1] is T in component Environment (kelvin).
 * CONSTANTS[2] is F in component Environment (coulomb_per_mole).
 * CONSTANTS[3] is K_o in component Environment (millimolar).
 * CONSTANTS[4] is Ca_o in component Environment (millimolar).
 * CONSTANTS[5] is Na_o in component Environment (millimolar).
 * STATES[0] is V in component cell (millivolt).
 * CONSTANTS[6] is Cm in component cell (nanoF).
 * CONSTANTS[7] is Vol_c in component cell (nanolitre).
 * ALGEBRAIC[76] is i_K1 in component IK1 (nanoA_per_nanoF).
 * ALGEBRAIC[29] is i_to in component Ito (nanoA_per_nanoF).
 * ALGEBRAIC[13] is i_Kr in component IKr (nanoA_per_nanoF).
 * ALGEBRAIC[24] is i_Ks in component IKs (nanoA_per_nanoF).
 * ALGEBRAIC[48] is i_CaL in component ICaL (nanoA_per_nanoF).
 * ALGEBRAIC[63] is i_NaK in component INaK (nanoA_per_nanoF).
 * ALGEBRAIC[34] is i_Na in component INa (nanoA_per_nanoF).
 * ALGEBRAIC[47] is i_b_Na in component INab (nanoA_per_nanoF).
 * ALGEBRAIC[64] is i_NaCa in component INaCa (nanoA_per_nanoF).
 * ALGEBRAIC[60] is i_b_Ca in component ICab (nanoA_per_nanoF).
 * ALGEBRAIC[62] is i_p_K in component IpK (nanoA_per_nanoF).
 * ALGEBRAIC[61] is i_p_Ca in component IpCa (nanoA_per_nanoF).
 * ALGEBRAIC[0] is i_Stim in component cell (nanoA_per_nanoF).
 * ALGEBRAIC[77] is i_tot in component cell (nanoA_per_nanoF).
 * CONSTANTS[8] is stim_Period in component cell (millisecond).
 * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt).
 * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt).
 * ALGEBRAIC[3] is E_Ks in component reversal_potentials (millivolt).
 * ALGEBRAIC[4] is E_Ca in component reversal_potentials (millivolt).
 * CONSTANTS[9] is P_kna in component reversal_potentials (dimensionless).
 * STATES[1] is K_i in component K (millimolar).
 * STATES[2] is Na_i in component Na (millimolar).
 * STATES[3] is Ca_i in component Ca (millimolar).
 * CONSTANTS[10] is g_K1_0 in component IK1 (microS_per_nanoF).
 * ALGEBRAIC[12] is xK1_inf in component iK1_rectification (dimensionless).
 * CONSTANTS[11] is Mg_Buf in component iK1_rectification (millimolar).
 * CONSTANTS[12] is SPM in component iK1_rectification (millimolar).
 * CONSTANTS[13] is fac in component iK1_rectification (dimensionless).
 * CONSTANTS[14] is phi in component iK1_rectification (dimensionless).
 * ALGEBRAIC[9] is temp in component iK1_rectification (dimensionless).
 * ALGEBRAIC[10] is rec1 in component iK1_rectification (dimensionless).
 * ALGEBRAIC[11] is rec2 in component iK1_rectification (dimensionless).
 * ALGEBRAIC[5] is KiMg in component iK1_rectification (millimolar).
 * ALGEBRAIC[6] is KbMg in component iK1_rectification (millimolar).
 * ALGEBRAIC[7] is Kd1SPM in component iK1_rectification (millimolar).
 * ALGEBRAIC[8] is Kd2SPM in component iK1_rectification (millimolar).
 * CONSTANTS[15] is g_Kr_0 in component IKr (microS_per_nanoF).
 * STATES[4] is Or4 in component iKr_Markov (dimensionless).
 * STATES[5] is Cr1 in component iKr_Markov (dimensionless).
 * STATES[6] is Cr2 in component iKr_Markov (dimensionless).
 * STATES[7] is Cr3 in component iKr_Markov (dimensionless).
 * STATES[8] is Ir5 in component iKr_Markov (dimensionless).
 * CONSTANTS[16] is T_Base in component iKr_Markov (kelvin).
 * ALGEBRAIC[14] is alpha_xr1 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[15] is beta_xr1 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[16] is alpha_xr2 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[17] is beta_xr2 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[18] is alpha_xr3 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[19] is beta_xr3 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[20] is alpha_xr4 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[21] is beta_xr4 in component iKr_Markov (per_millisecond).
 * ALGEBRAIC[22] is OtoB in component iKr_Markov_Sotalol_block (per_millisecond).
 * ALGEBRAIC[23] is BtoO in component iKr_Markov_Sotalol_block (per_millisecond).
 * CONSTANTS[17] is Sotalol_mM in component iKr_Markov_Sotalol_block (millimolar).
 * STATES[9] is BCr1 in component iKr_Markov_Sotalol_block (dimensionless).
 * STATES[10] is BCr2 in component iKr_Markov_Sotalol_block (dimensionless).
 * STATES[11] is BCr3 in component iKr_Markov_Sotalol_block (dimensionless).
 * STATES[12] is BOr4 in component iKr_Markov_Sotalol_block (dimensionless).
 * STATES[13] is BIr5 in component iKr_Markov_Sotalol_block (dimensionless).
 * CONSTANTS[18] is kBinding in component iKr_Markov_Sotalol_block (per_millimolar_per_millisecond).
 * CONSTANTS[19] is kDiss in component iKr_Markov_Sotalol_block (per_millisecond).
 * CONSTANTS[20] is g_Ks in component IKs (microS_per_nanoF).
 * STATES[14] is Xs in component iKs_Xs_gate (dimensionless).
 * ALGEBRAIC[25] is xs_inf in component iKs_Xs_gate (dimensionless).
 * ALGEBRAIC[26] is alpha_xs in component iKs_Xs_gate (dimensionless).
 * ALGEBRAIC[27] is beta_xs in component iKs_Xs_gate (dimensionless).
 * ALGEBRAIC[28] is tau_xs in component iKs_Xs_gate (millisecond).
 * CONSTANTS[21] is g_to in component Ito (microS_per_nanoF).
 * STATES[15] is s in component ito_s_gate (dimensionless).
 * STATES[16] is r in component ito_r_gate (dimensionless).
 * ALGEBRAIC[30] is s_inf in component ito_s_gate (dimensionless).
 * ALGEBRAIC[31] is tau_s in component ito_s_gate (millisecond).
 * ALGEBRAIC[32] is r_inf in component ito_r_gate (dimensionless).
 * ALGEBRAIC[33] is tau_r in component ito_r_gate (millisecond).
 * CONSTANTS[22] is g_Na in component INa (microS_per_nanoF).
 * CONSTANTS[23] is shift_INa_inact in component INa (millivolt).
 * STATES[17] is m in component iNa_m_gate (dimensionless).
 * STATES[18] is h in component iNa_h_gate (dimensionless).
 * STATES[19] is j in component iNa_j_gate (dimensionless).
 * ALGEBRAIC[35] is m_inf in component iNa_m_gate (dimensionless).
 * ALGEBRAIC[36] is alpha_m in component iNa_m_gate (dimensionless).
 * ALGEBRAIC[37] is beta_m in component iNa_m_gate (dimensionless).
 * ALGEBRAIC[38] is tau_m in component iNa_m_gate (millisecond).
 * ALGEBRAIC[39] is h_inf in component iNa_h_gate (dimensionless).
 * ALGEBRAIC[40] is alpha_h in component iNa_h_gate (per_millisecond).
 * ALGEBRAIC[41] is beta_h in component iNa_h_gate (per_millisecond).
 * ALGEBRAIC[42] is tau_h in component iNa_h_gate (millisecond).
 * ALGEBRAIC[43] is j_inf in component iNa_j_gate (dimensionless).
 * ALGEBRAIC[44] is alpha_j in component iNa_j_gate (per_millisecond).
 * ALGEBRAIC[45] is beta_j in component iNa_j_gate (per_millisecond).
 * ALGEBRAIC[46] is tau_j in component iNa_j_gate (millisecond).
 * CONSTANTS[24] is g_bna in component INab (microS_per_nanoF).
 * CONSTANTS[25] is g_CaL in component ICaL (litre_per_farad_millisecond).
 * STATES[20] is Ca_ss in component Ca (millimolar).
 * STATES[21] is d in component iCaL_d_gate (dimensionless).
 * STATES[22] is f in component iCaL_f_gate (dimensionless).
 * STATES[23] is f2 in component iCaL_f2_gate (dimensionless).
 * STATES[24] is fCass in component iCaL_fCass_gate (dimensionless).
 * CONSTANTS[26] is z in component ICaL (dimensionless).
 * ALGEBRAIC[49] is d_inf in component iCaL_d_gate (dimensionless).
 * ALGEBRAIC[50] is alpha_d in component iCaL_d_gate (dimensionless).
 * ALGEBRAIC[51] is beta_d in component iCaL_d_gate (dimensionless).
 * ALGEBRAIC[52] is gamma_d in component iCaL_d_gate (millisecond).
 * ALGEBRAIC[53] is tau_d in component iCaL_d_gate (millisecond).
 * CONSTANTS[27] is d_inf_shift in component iCaL_d_gate (millivolt).
 * ALGEBRAIC[54] is f_inf in component iCaL_f_gate (dimensionless).
 * ALGEBRAIC[55] is tau_f in component iCaL_f_gate (millisecond).
 * ALGEBRAIC[56] is f2_inf in component iCaL_f2_gate (dimensionless).
 * ALGEBRAIC[57] is tau_f2 in component iCaL_f2_gate (millisecond).
 * ALGEBRAIC[58] is fCass_inf in component iCaL_fCass_gate (dimensionless).
 * ALGEBRAIC[59] is tau_fCass in component iCaL_fCass_gate (millisecond).
 * CONSTANTS[28] is g_bca in component ICab (microS_per_nanoF).
 * CONSTANTS[29] is g_pCa in component IpCa (nanoA_per_nanoF).
 * CONSTANTS[30] is K_pCa in component IpCa (millimolar).
 * CONSTANTS[31] is g_pK in component IpK (microS_per_nanoF).
 * CONSTANTS[32] is P_NaK in component INaK (nanoA_per_nanoF).
 * CONSTANTS[33] is K_mk in component INaK (millimolar).
 * CONSTANTS[34] is K_mNa in component INaK (millimolar).
 * CONSTANTS[35] is K_NaCa in component INaCa (nanoA_per_nanoF).
 * CONSTANTS[36] is K_sat in component INaCa (dimensionless).
 * CONSTANTS[37] is alpha in component INaCa (dimensionless).
 * CONSTANTS[38] is gamma in component INaCa (dimensionless).
 * CONSTANTS[39] is Km_Ca in component INaCa (millimolar).
 * CONSTANTS[40] is Km_Nai in component INaCa (millimolar).
 * STATES[25] is Ca_SR in component Ca (millimolar).
 * ALGEBRAIC[73] is Ca_i_bufc in component Ca_buffer (dimensionless).
 * ALGEBRAIC[74] is Ca_sr_bufsr in component Ca_buffer (dimensionless).
 * ALGEBRAIC[75] is Ca_ss_bufss in component Ca_buffer (dimensionless).
 * CONSTANTS[41] is V_sr in component Ca (nanolitre).
 * CONSTANTS[42] is V_ss in component Ca (nanolitre).
 * ALGEBRAIC[72] is i_rel in component Irel (millimolar_per_millisecond).
 * ALGEBRAIC[65] is i_up in component Ileak_Iup_Ixfer (millimolar_per_millisecond).
 * ALGEBRAIC[66] is i_leak in component Ileak_Iup_Ixfer (millimolar_per_millisecond).
 * ALGEBRAIC[67] is i_xfer in component Ileak_Iup_Ixfer (millimolar_per_millisecond).
 * CONSTANTS[43] is Vol_xfer in component Ileak_Iup_Ixfer (per_millisecond).
 * CONSTANTS[44] is K_up in component Ileak_Iup_Ixfer (millimolar).
 * CONSTANTS[45] is Vol_leak in component Ileak_Iup_Ixfer (per_millisecond).
 * CONSTANTS[46] is Vmax_up in component Ileak_Iup_Ixfer (millimolar_per_millisecond).
 * STATES[26] is R_prime in component Irel (dimensionless).
 * CONSTANTS[47] is k1_prime in component Irel (per_millimolar2_per_millisecond).
 * CONSTANTS[48] is k2_prime in component Irel (per_millimolar_per_millisecond).
 * CONSTANTS[49] is EC in component Irel (millimolar).
 * CONSTANTS[50] is max_sr in component Irel (dimensionless).
 * CONSTANTS[51] is min_sr in component Irel (dimensionless).
 * CONSTANTS[52] is k3 in component Irel (per_millisecond).
 * CONSTANTS[53] is k4 in component Irel (per_millisecond).
 * CONSTANTS[54] is Vol_rel in component Irel (per_millisecond).
 * ALGEBRAIC[71] is O in component Irel (dimensionless).
 * ALGEBRAIC[68] is kcasr in component Irel (dimensionless).
 * ALGEBRAIC[69] is k1 in component Irel (per_millimolar2_per_millisecond).
 * ALGEBRAIC[70] is k2 in component Irel (per_millimolar_per_millisecond).
 * CONSTANTS[55] is Buf_c in component Ca_buffer (millimolar).
 * CONSTANTS[56] is K_buf_c in component Ca_buffer (millimolar).
 * CONSTANTS[57] is Buf_sr in component Ca_buffer (millimolar).
 * CONSTANTS[58] is K_buf_sr in component Ca_buffer (millimolar).
 * CONSTANTS[59] is Buf_ss in component Ca_buffer (millimolar).
 * CONSTANTS[60] is K_buf_ss in component Ca_buffer (millimolar).
 * RATES[0] is d/dt V in component cell (millivolt).
 * RATES[5] is d/dt Cr1 in component iKr_Markov (dimensionless).
 * RATES[6] is d/dt Cr2 in component iKr_Markov (dimensionless).
 * RATES[7] is d/dt Cr3 in component iKr_Markov (dimensionless).
 * RATES[4] is d/dt Or4 in component iKr_Markov (dimensionless).
 * RATES[8] is d/dt Ir5 in component iKr_Markov (dimensionless).
 * RATES[9] is d/dt BCr1 in component iKr_Markov_Sotalol_block (dimensionless).
 * RATES[10] is d/dt BCr2 in component iKr_Markov_Sotalol_block (dimensionless).
 * RATES[11] is d/dt BCr3 in component iKr_Markov_Sotalol_block (dimensionless).
 * RATES[12] is d/dt BOr4 in component iKr_Markov_Sotalol_block (dimensionless).
 * RATES[13] is d/dt BIr5 in component iKr_Markov_Sotalol_block (dimensionless).
 * RATES[14] is d/dt Xs in component iKs_Xs_gate (dimensionless).
 * RATES[15] is d/dt s in component ito_s_gate (dimensionless).
 * RATES[16] is d/dt r in component ito_r_gate (dimensionless).
 * RATES[17] is d/dt m in component iNa_m_gate (dimensionless).
 * RATES[18] is d/dt h in component iNa_h_gate (dimensionless).
 * RATES[19] is d/dt j in component iNa_j_gate (dimensionless).
 * RATES[21] is d/dt d in component iCaL_d_gate (dimensionless).
 * RATES[22] is d/dt f in component iCaL_f_gate (dimensionless).
 * RATES[23] is d/dt f2 in component iCaL_f2_gate (dimensionless).
 * RATES[24] is d/dt fCass in component iCaL_fCass_gate (dimensionless).
 * RATES[3] is d/dt Ca_i in component Ca (millimolar).
 * RATES[25] is d/dt Ca_SR in component Ca (millimolar).
 * RATES[20] is d/dt Ca_ss in component Ca (millimolar).
 * RATES[26] is d/dt R_prime in component Irel (dimensionless).
 * RATES[2] is d/dt Na_i in component Na (millimolar).
 * RATES[1] is d/dt K_i in component K (millimolar).
 * There are a total of 6 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 5.4;
CONSTANTS[4] = 2;
CONSTANTS[5] = 140;
STATES[0] = -86.45;
CONSTANTS[6] = 0.115;
CONSTANTS[7] = 0.016404;
CONSTANTS[8] = 1000;
CONSTANTS[9] = 0.03;
STATES[1] = 141.0167;
STATES[2] = 7.940167;
STATES[3] = 1.092e-4;
CONSTANTS[10] = 0.6821;
CONSTANTS[11] = 0.0356;
CONSTANTS[12] = 1.4613e-3;
CONSTANTS[13] = 1.0648;
CONSTANTS[14] = 0.8838;
CONSTANTS[15] = 0.024;
STATES[4] = 0.014;
STATES[5] = 0.9786;
STATES[6] = 0.0031;
STATES[7] = 0.0029;
STATES[8] = 0.0014;
CONSTANTS[16] = 310;
CONSTANTS[17] = 0;
STATES[9] = 0;
STATES[10] = 0;
STATES[11] = 0;
STATES[12] = 0;
STATES[13] = 0;
CONSTANTS[18] = 5e-3;
CONSTANTS[19] = 0.00125;
CONSTANTS[20] = 0.0392;
STATES[14] = 0.00303;
CONSTANTS[21] = 0.2;
STATES[15] = 1;
STATES[16] = 2.11e-8;
CONSTANTS[22] = 11;
CONSTANTS[23] = 0;
STATES[17] = 0.00132;
STATES[18] = 0.7768;
STATES[19] = 0.7766;
CONSTANTS[24] = 0.00029;
CONSTANTS[25] = 2e-5;
STATES[20] = 1.893e-4;
STATES[21] = 5.06e-6;
STATES[22] = 0.9999;
STATES[23] = 0.9995;
STATES[24] = 1;
CONSTANTS[26] = 2;
CONSTANTS[27] = 5;
CONSTANTS[28] = 0.0004736;
CONSTANTS[29] = 0.0619;
CONSTANTS[30] = 0.0005;
CONSTANTS[31] = 0.00973;
CONSTANTS[32] = 1.297;
CONSTANTS[33] = 1;
CONSTANTS[34] = 40;
CONSTANTS[35] = 200;
CONSTANTS[36] = 0.1;
CONSTANTS[37] = 2.5;
CONSTANTS[38] = 0.35;
CONSTANTS[39] = 1.38;
CONSTANTS[40] = 87.5;
STATES[25] = 2.7656;
CONSTANTS[41] = 0.001094;
CONSTANTS[42] = 0.00005468;
CONSTANTS[43] = 0.0038;
CONSTANTS[44] = 0.00025;
CONSTANTS[45] = 0.00036;
CONSTANTS[46] = 0.006375;
STATES[26] = 0.9864;
CONSTANTS[47] = 0.15;
CONSTANTS[48] = 0.045;
CONSTANTS[49] = 1.5;
CONSTANTS[50] = 2.5;
CONSTANTS[51] = 1;
CONSTANTS[52] = 0.06;
CONSTANTS[53] = 0.005;
CONSTANTS[54] = 0.306;
CONSTANTS[55] = 0.2;
CONSTANTS[56] = 0.001;
CONSTANTS[57] = 10;
CONSTANTS[58] = 0.3;
CONSTANTS[59] = 0.4;
CONSTANTS[60] = 0.00025;
RATES[0] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[4] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[17] = 0.1001;
RATES[18] = 0.1001;
RATES[19] = 0.1001;
RATES[21] = 0.1001;
RATES[22] = 0.1001;
RATES[23] = 0.1001;
RATES[24] = 0.1001;
RATES[3] = 0.1001;
RATES[25] = 0.1001;
RATES[20] = 0.1001;
RATES[26] = 0.1001;
RATES[2] = 0.1001;
RATES[1] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - - ALGEBRAIC[77];
resid[1] = RATES[5] -  ALGEBRAIC[15]*STATES[6] -  ALGEBRAIC[14]*STATES[5];
resid[2] = RATES[6] - ( ALGEBRAIC[14]*STATES[5]+ ALGEBRAIC[17]*STATES[7]) -  (ALGEBRAIC[16]+ALGEBRAIC[15])*STATES[6];
resid[3] = RATES[7] - ( ALGEBRAIC[16]*STATES[6]+ ALGEBRAIC[19]*STATES[4]) -  (ALGEBRAIC[18]+ALGEBRAIC[17])*STATES[7];
resid[4] = RATES[4] - ((( ALGEBRAIC[18]*STATES[7]+ ALGEBRAIC[21]*STATES[8]) -  (ALGEBRAIC[20]+ALGEBRAIC[19])*STATES[4]) - ALGEBRAIC[22])+ALGEBRAIC[23];
resid[5] = RATES[8] -  ALGEBRAIC[20]*STATES[4] -  ALGEBRAIC[21]*STATES[8];
resid[6] = RATES[9] -  ALGEBRAIC[15]*STATES[10] -  ALGEBRAIC[14]*STATES[9];
resid[7] = RATES[10] - ( ALGEBRAIC[14]*STATES[9]+ ALGEBRAIC[17]*STATES[11]) -  (ALGEBRAIC[16]+ALGEBRAIC[15])*STATES[10];
resid[8] = RATES[11] - ( ALGEBRAIC[16]*STATES[10]+ ALGEBRAIC[19]*STATES[12]) -  (ALGEBRAIC[18]+ALGEBRAIC[17])*STATES[11];
resid[9] = RATES[12] - ((( ALGEBRAIC[18]*STATES[11]+ ALGEBRAIC[21]*STATES[13]) -  (ALGEBRAIC[20]+ALGEBRAIC[19])*STATES[12])+ALGEBRAIC[22]) - ALGEBRAIC[23];
resid[10] = RATES[13] -  ALGEBRAIC[20]*STATES[12] -  ALGEBRAIC[21]*STATES[13];
resid[11] = RATES[14] - (ALGEBRAIC[25] - STATES[14])/ALGEBRAIC[28];
resid[12] = RATES[15] - (ALGEBRAIC[30] - STATES[15])/ALGEBRAIC[31];
resid[13] = RATES[16] - (ALGEBRAIC[32] - STATES[16])/ALGEBRAIC[33];
resid[14] = RATES[17] - (ALGEBRAIC[35] - STATES[17])/ALGEBRAIC[38];
resid[15] = RATES[18] - (ALGEBRAIC[39] - STATES[18])/ALGEBRAIC[42];
resid[16] = RATES[19] - (ALGEBRAIC[43] - STATES[19])/ALGEBRAIC[46];
resid[17] = RATES[21] - (ALGEBRAIC[49] - STATES[21])/ALGEBRAIC[53];
resid[18] = RATES[22] - (ALGEBRAIC[54] - STATES[22])/ALGEBRAIC[55];
resid[19] = RATES[23] - (ALGEBRAIC[56] - STATES[23])/ALGEBRAIC[57];
resid[20] = RATES[24] - (ALGEBRAIC[58] - STATES[24])/ALGEBRAIC[59];
resid[21] = RATES[3] -  ALGEBRAIC[73]*((( (ALGEBRAIC[66] - ALGEBRAIC[65])*CONSTANTS[41])/CONSTANTS[7]+ALGEBRAIC[67]) - ( ((ALGEBRAIC[60]+ALGEBRAIC[61]) -  2.00000*ALGEBRAIC[64])*CONSTANTS[6])/( 2.00000*CONSTANTS[7]*CONSTANTS[2]));
resid[22] = RATES[25] -  ALGEBRAIC[74]*(ALGEBRAIC[65] - (ALGEBRAIC[72]+ALGEBRAIC[66]));
resid[23] = RATES[20] -  ALGEBRAIC[75]*((( - ALGEBRAIC[48]*CONSTANTS[6])/( 2.00000*CONSTANTS[42]*CONSTANTS[2])+( ALGEBRAIC[72]*CONSTANTS[41])/CONSTANTS[42]) - ( ALGEBRAIC[67]*CONSTANTS[7])/CONSTANTS[42]);
resid[24] = RATES[26] -  - ALGEBRAIC[70]*STATES[20]*STATES[26]+ CONSTANTS[53]*(1.00000 - STATES[26]);
resid[25] = RATES[2] - ( - (ALGEBRAIC[34]+ALGEBRAIC[47]+ 3.00000*ALGEBRAIC[63]+ 3.00000*ALGEBRAIC[64])*CONSTANTS[6])/( CONSTANTS[7]*CONSTANTS[2]);
resid[26] = RATES[1] -  (- ((ALGEBRAIC[76]+ALGEBRAIC[29]+ALGEBRAIC[13]+ALGEBRAIC[24]+ALGEBRAIC[62]+ALGEBRAIC[0]) -  2.00000*ALGEBRAIC[63])/( CONSTANTS[7]*CONSTANTS[2]))*CONSTANTS[6];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000 ? - 12.0000 : 0.00000);
ALGEBRAIC[2] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[3]/STATES[1]);
ALGEBRAIC[13] =  CONSTANTS[15]*(CONSTANTS[1]/35.0000 - 55.0000/7.00000)* pow((CONSTANTS[3]/5.40000), 1.0 / 2)*STATES[4]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[14] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(24.3350+ (CONSTANTS[16]/CONSTANTS[1])*( 0.0112000*STATES[0] - 25.9140));
ALGEBRAIC[15] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(13.6880+ (CONSTANTS[16]/CONSTANTS[1])*( - 0.0603000*STATES[0] - 15.7070));
ALGEBRAIC[16] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(22.7460+ (CONSTANTS[16]/CONSTANTS[1])*( 0.00000*STATES[0] - 25.9140));
ALGEBRAIC[17] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(13.1930+ (CONSTANTS[16]/CONSTANTS[1])*( 0.00000*STATES[0] - 15.7070));
ALGEBRAIC[18] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(22.0980+ (CONSTANTS[16]/CONSTANTS[1])*( 0.0365000*STATES[0] - 25.9140));
ALGEBRAIC[19] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(7.31300+ (CONSTANTS[16]/CONSTANTS[1])*( - 0.0399000*STATES[0] - 15.7070));
ALGEBRAIC[20] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(30.0160+ (CONSTANTS[16]/CONSTANTS[1])*( 0.0223000*STATES[0] - 30.8880))*pow(5.40000/CONSTANTS[3], 0.400000);
ALGEBRAIC[21] =  (( 1.00000*CONSTANTS[1])/CONSTANTS[16])*exp(30.0610+ (CONSTANTS[16]/CONSTANTS[1])*( - 0.0312000*STATES[0] - 33.2430));
ALGEBRAIC[22] =  STATES[4]*CONSTANTS[17]*CONSTANTS[18];
ALGEBRAIC[23] =  STATES[12]*CONSTANTS[19];
ALGEBRAIC[3] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[3]+ CONSTANTS[9]*CONSTANTS[5])/(STATES[1]+ CONSTANTS[9]*STATES[2]));
ALGEBRAIC[24] =  CONSTANTS[20]*pow(STATES[14], 2.00000)*(STATES[0] - ALGEBRAIC[3]);
ALGEBRAIC[25] = 1.00000/(1.00000+exp((- 5.00000 - STATES[0])/14.0000));
ALGEBRAIC[26] = 1400.00/ pow((1.00000+exp((5.00000 - STATES[0])/6.00000)), 1.0 / 2);
ALGEBRAIC[27] = 1.00000/(1.00000+exp((STATES[0] - 35.0000)/15.0000));
ALGEBRAIC[28] =  1.00000*ALGEBRAIC[26]*ALGEBRAIC[27]+80.0000;
ALGEBRAIC[29] =  CONSTANTS[21]*STATES[16]*STATES[15]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[30] = 1.00000/(1.00000+exp((STATES[0]+20.0000)/5.00000));
ALGEBRAIC[31] =  85.0000*exp(- pow(STATES[0]+45.0000, 2.00000)/320.000)+5.00000/(1.00000+exp((STATES[0] - 20.0000)/5.00000))+3.00000;
ALGEBRAIC[32] = 1.00000/(1.00000+exp((20.0000 - STATES[0])/6.00000));
ALGEBRAIC[33] =  9.50000*exp(- pow(STATES[0]+40.0000, 2.00000)/1800.00)+0.800000;
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[5]/STATES[2]);
ALGEBRAIC[34] =  CONSTANTS[22]*pow(STATES[17], 3.00000)*STATES[18]*STATES[19]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[35] = 1.00000/pow(1.00000+exp((- 56.8600 - STATES[0])/9.03000), 2.00000);
ALGEBRAIC[36] = 1.00000/(1.00000+exp((- 60.0000 - STATES[0])/5.00000));
ALGEBRAIC[37] = 0.100000/(1.00000+exp((STATES[0]+35.0000)/5.00000))+0.100000/(1.00000+exp((STATES[0] - 50.0000)/200.000));
ALGEBRAIC[38] =  1.00000*ALGEBRAIC[36]*ALGEBRAIC[37];
ALGEBRAIC[39] = 1.00000/pow(1.00000+exp(((STATES[0]+71.5500) - CONSTANTS[23])/7.43000), 2.00000);
ALGEBRAIC[40] = (CONDVAR[2]<0.00000 ?  0.0570000*exp(- ((STATES[0]+80.0000) - CONSTANTS[23])/6.80000) : 0.00000);
ALGEBRAIC[41] = (CONDVAR[3]<0.00000 ?  2.70000*exp( 0.0790000*(STATES[0] - CONSTANTS[23]))+ 310000.*exp( 0.348500*(STATES[0] - CONSTANTS[23])) : 0.770000/( 0.130000*(1.00000+exp(((STATES[0]+10.6600) - CONSTANTS[23])/- 11.1000))));
ALGEBRAIC[42] = 1.00000/(ALGEBRAIC[40]+ALGEBRAIC[41]);
ALGEBRAIC[43] = 1.00000/pow(1.00000+exp(((STATES[0]+71.5500) - CONSTANTS[23])/7.43000), 2.00000);
ALGEBRAIC[44] = (CONDVAR[4]<0.00000 ? (( ( - 25428.0*exp( 0.244400*(STATES[0] - CONSTANTS[23])) -  6.94800e-06*exp( - 0.0439100*(STATES[0] - CONSTANTS[23])))*(STATES[0]+37.7800))/1.00000)/(1.00000+exp( 0.311000*((STATES[0]+79.2300) - CONSTANTS[23]))) : 0.00000);
ALGEBRAIC[45] = (CONDVAR[5]<0.00000 ? ( 0.0242400*exp( - 0.0105200*(STATES[0] - CONSTANTS[23])))/(1.00000+exp( - 0.137800*((STATES[0]+40.1400) - CONSTANTS[23]))) : ( 0.600000*exp( 0.0570000*(STATES[0] - CONSTANTS[23])))/(1.00000+exp( - 0.100000*((STATES[0]+32.0000) - CONSTANTS[23]))));
ALGEBRAIC[46] = 1.00000/(ALGEBRAIC[44]+ALGEBRAIC[45]);
ALGEBRAIC[47] =  CONSTANTS[24]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[48] = ( (( CONSTANTS[25]*STATES[21]*STATES[22]*STATES[23]*STATES[24]*pow(CONSTANTS[26], 2.00000)*(STATES[0] - 15.0000)*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( 0.250000*STATES[20]*exp(( 2.00000*(STATES[0] - 15.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[4]))/(exp(( 2.00000*(STATES[0] - 15.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[49] = 1.00000/(1.00000+exp((CONSTANTS[27] - STATES[0])/7.50000));
ALGEBRAIC[50] = 1.40000/(1.00000+exp((- 35.0000 - STATES[0])/13.0000))+0.250000;
ALGEBRAIC[51] = 1.40000/(1.00000+exp((STATES[0]+5.00000)/5.00000));
ALGEBRAIC[52] = 1.00000/(1.00000+exp((50.0000 - STATES[0])/20.0000));
ALGEBRAIC[53] =  1.00000*ALGEBRAIC[50]*ALGEBRAIC[51]+ALGEBRAIC[52];
ALGEBRAIC[54] = 1.00000/(1.00000+exp((STATES[0]+20.0000)/7.00000));
ALGEBRAIC[55] = ( 1102.50*exp(- pow(STATES[0]+27.0000, 2.00000)/225.000)+200.000/(1.00000+exp((13.0000 - STATES[0])/10.0000))+180.000/(1.00000+exp((STATES[0]+30.0000)/10.0000))+20.0000)/4.00000;
ALGEBRAIC[56] = 0.750000/(1.00000+exp((STATES[0]+35.0000)/7.00000))+0.250000;
ALGEBRAIC[57] = ( 562.000*exp(- pow(STATES[0]+27.0000, 2.00000)/240.000)+31.0000/(1.00000+exp((25.0000 - STATES[0])/10.0000))+80.0000/(1.00000+exp((STATES[0]+30.0000)/10.0000)))/2.00000;
ALGEBRAIC[58] = 0.400000/(1.00000+pow(STATES[20]/0.0500000, 2.00000))+0.600000;
ALGEBRAIC[59] = 80.0000/(1.00000+pow(STATES[20]/0.0500000, 2.00000))+2.00000;
ALGEBRAIC[4] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[4]/STATES[3]);
ALGEBRAIC[60] =  CONSTANTS[28]*(STATES[0] - ALGEBRAIC[4]);
ALGEBRAIC[61] = ( CONSTANTS[29]*STATES[3])/(STATES[3]+CONSTANTS[30]);
ALGEBRAIC[62] = ( CONSTANTS[31]*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp((25.0000 - STATES[0])/5.98000));
ALGEBRAIC[63] = (( (( CONSTANTS[32]*CONSTANTS[3])/(CONSTANTS[3]+CONSTANTS[33]))*STATES[2])/(STATES[2]+CONSTANTS[34]))/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0353000*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[64] = ( CONSTANTS[35]*( exp(( CONSTANTS[38]*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], 3.00000)*CONSTANTS[4] -  exp(( (CONSTANTS[38] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[5], 3.00000)*STATES[3]*CONSTANTS[37]))/( (pow(CONSTANTS[40], 3.00000)+pow(CONSTANTS[5], 3.00000))*(CONSTANTS[39]+CONSTANTS[4])*(1.00000+ CONSTANTS[36]*exp(( (CONSTANTS[38] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))));
ALGEBRAIC[65] = CONSTANTS[46]/(1.00000+pow(CONSTANTS[44], 2.00000)/pow(STATES[3], 2.00000));
ALGEBRAIC[66] =  CONSTANTS[45]*(STATES[25] - STATES[3]);
ALGEBRAIC[67] =  CONSTANTS[43]*(STATES[20] - STATES[3]);
ALGEBRAIC[68] = CONSTANTS[50] - (CONSTANTS[50] - CONSTANTS[51])/(1.00000+pow(CONSTANTS[49]/STATES[25], 2.00000));
ALGEBRAIC[70] =  CONSTANTS[48]*ALGEBRAIC[68];
ALGEBRAIC[69] = CONSTANTS[47]/ALGEBRAIC[68];
ALGEBRAIC[71] = ( ALGEBRAIC[69]*pow(STATES[20], 2.00000)*STATES[26])/(CONSTANTS[52]+ ALGEBRAIC[69]*pow(STATES[20], 2.00000));
ALGEBRAIC[72] =  CONSTANTS[54]*ALGEBRAIC[71]*(STATES[25] - STATES[20]);
ALGEBRAIC[73] = 1.00000/(1.00000+( CONSTANTS[55]*CONSTANTS[56])/pow(STATES[3]+CONSTANTS[56], 2.00000));
ALGEBRAIC[74] = 1.00000/(1.00000+( CONSTANTS[57]*CONSTANTS[58])/pow(STATES[25]+CONSTANTS[58], 2.00000));
ALGEBRAIC[75] = 1.00000/(1.00000+( CONSTANTS[59]*CONSTANTS[60])/pow(STATES[20]+CONSTANTS[60], 2.00000));
ALGEBRAIC[6] =  0.450000*exp(- (STATES[0] -  CONSTANTS[13]*ALGEBRAIC[2])/20.0000);
ALGEBRAIC[9] = 1.00000+CONSTANTS[11]/ALGEBRAIC[6];
ALGEBRAIC[5] =  2.80000*exp(- (STATES[0] -  CONSTANTS[13]*ALGEBRAIC[2])/180.000);
ALGEBRAIC[7] =  0.000700000*exp(- ((STATES[0] -  CONSTANTS[13]*ALGEBRAIC[2])+ 8.00000*CONSTANTS[11])/4.80000);
ALGEBRAIC[10] = ( ALGEBRAIC[9]*ALGEBRAIC[9])/(CONSTANTS[12]/ALGEBRAIC[7]+CONSTANTS[11]/ALGEBRAIC[5]+ ALGEBRAIC[9]*ALGEBRAIC[9]*ALGEBRAIC[9]);
ALGEBRAIC[8] =  0.0400000*exp(- (STATES[0] -  CONSTANTS[13]*ALGEBRAIC[2])/9.10000);
ALGEBRAIC[11] = 1.00000/(1.00000+CONSTANTS[12]/ALGEBRAIC[8]);
ALGEBRAIC[12] =  CONSTANTS[14]*ALGEBRAIC[10]+ (1.00000 - CONSTANTS[14])*ALGEBRAIC[11];
ALGEBRAIC[76] =  CONSTANTS[10]*(CONSTANTS[1]/35.0000 - 55.0000/7.00000)* pow((CONSTANTS[3]/5.40000), 1.0 / 2)*ALGEBRAIC[12]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[77] = ALGEBRAIC[76]+ALGEBRAIC[29]+ALGEBRAIC[13]+ALGEBRAIC[24]+ALGEBRAIC[48]+ALGEBRAIC[63]+ALGEBRAIC[34]+ALGEBRAIC[47]+ALGEBRAIC[64]+ALGEBRAIC[60]+ALGEBRAIC[62]+ALGEBRAIC[61]+ALGEBRAIC[0];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
SI[20] = 1.0;
SI[21] = 1.0;
SI[22] = 1.0;
SI[23] = 1.0;
SI[24] = 1.0;
SI[25] = 1.0;
SI[26] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = (VOI -  floor(VOI/CONSTANTS[8])*CONSTANTS[8]) - 100.000;
CONDVAR[1] = (VOI -  floor(VOI/CONSTANTS[8])*CONSTANTS[8]) - 103.000;
CONDVAR[2] = STATES[0] - (- 40.0000+CONSTANTS[23]);
CONDVAR[3] = STATES[0] - (- 40.0000+CONSTANTS[23]);
CONDVAR[4] = STATES[0] - (- 40.0000+CONSTANTS[23]);
CONDVAR[5] = STATES[0] - (- 40.0000+CONSTANTS[23]);
}