# Model Mathematics

### Component: I_CaT

$I_CaT = g_CaT ⁢ OCaT ⁢ Vm - ECaT$$dd time OCaT = alpha_OT ⁢ dT ⁢ fT ⁢ 1.0 - OCaT - beta_OT ⁢ OCaT$

### Component: I_CaT_d_gate

$infinity_dT = 1.0 1.0 +ⅇ k_dT ⁢ Vm - V_dT$$tau_dT1 = A_dT1$$dd time dT = infinity_dT - dT tau_dT1$

### Component: I_CaT_f_gate

$infinity_fT = 1.0 1.0 +ⅇ k_fT ⁢ Vm - V_fT$$tau_fT1 = A_fT1 + A_fT2 - A_fT1 1.0 +ⅇ A_fT3 ⁢ Vm - A_fT4$$dd time fT = infinity_fT - fT tau_fT1$

### Component: I_CaExt

$I_CaExt = gCaExt ⁢ CCy KCaExt + CCy$

### Component: I_Kv1_1

$I_Kv1_1 = g_Kv1_1 ⁢ dv1_1 ⁢ fv1_1 ⁢ Vm - EK$

### Component: I_Kv1_1_d_gate

$alpha_dv1_1 = A_dv1_11 ⁢ A_dv1_12 1.0 +ⅇ A_dv1_13 ⁢ Vm - A_dv1_14 + 1.0 - A_dv1_12$$beta_dv1_1 = A_dv1_11 ⁢ A_dv1_12 - A_dv1_12 1.0 +ⅇ A_dv1_13 ⁢ Vm - A_dv1_14$$A_dv1_11 = A_dv1_11a + A_dv1_11b - A_dv1_11a 1.0 +ⅇ A_dv1_11c ⁢ Vm - A_dv1_11d$$dd time dv1_1 = alpha_dv1_1 ⁢ 1.0 - dv1_1 - beta_dv1_1 ⁢ dv1_1$

### Component: I_Kv1_1_f_gate

$alpha_fv1_1 = A_fv1_11 ⁢ A_fv1_12 1.0 +ⅇ A_fv1_13 ⁢ Vm - A_fv1_14 + 1.0 - A_fv1_12$$beta_fv1_1 = A_fv1_11 ⁢ A_fv1_12 - A_fv1_12 1.0 +ⅇ A_fv1_13 ⁢ Vm - A_fv1_14$$dd time fv1_1 = alpha_fv1_1 ⁢ 1.0 - fv1_1 - beta_fv1_1 ⁢ fv1_1$

### Component: I_KERG

$I_KERG = g_KERG ⁢ dERG ⁢ Vm - EK$

### Component: I_KERG_d_gate

$alpha_dERG = A_dERG1 ⁢ A_dERG2 1.0 +ⅇ A_dERG3 ⁢ Vm - A_dERG4 + 1.0 - A_dERG2$$beta_dERG = A_dERG1 ⁢ A_dERG2 - A_dERG2 1.0 +ⅇ A_dERG3 ⁢ Vm - A_dERG4$$dd time dERG = alpha_dERG ⁢ 1.0 - dERG - beta_dERG ⁢ dERG$

### Component: I_KB

$I_KB = g_KB ⁢ Vm - EK$

### Component: I_Na

$I_Na = g_Na ⁢ dNa ⁢ fNa ⁢ Vm - ENa_Cy$

### Component: I_Na_d_gate

$alpha_dNa = A_dNa1 ⁢ A_dNa2 1.0 +ⅇ A_dNa3 ⁢ Vm - A_dNa4 + 1.0 - A_dNa2$$beta_dNa = A_dNa1 ⁢ A_dNa2 - A_dNa2 1.0 +ⅇ A_dNa3 ⁢ Vm - A_dNa4$$A_dNa1 = A_dNa1a + A_dNa1b - A_dNa1a 1.0 +ⅇ A_dNa1c ⁢ Vm - A_dNa1d$$dd time dNa = alpha_dNa ⁢ 1.0 - dNa - beta_dNa ⁢ dNa$

### Component: I_Na_f_gate

$alpha_fNa = A_fNa1 ⁢ A_fNa2 1.0 +ⅇ A_fNa3 ⁢ Vm - A_fNa4 + 1.0 - A_fNa2$$beta_fNa = A_fNa1 ⁢ A_fNa2 - A_fNa2 1.0 +ⅇ A_fNa3 ⁢ Vm - A_fNa4$$A_fNa1 = A_fNa1a + A_fNa1b - A_fNa1a 1.0 +ⅇ A_fNa1c ⁢ Vm - A_fNa1d$$dd time fNa = alpha_fNa ⁢ 1.0 - fNa - beta_fNa ⁢ fNa$

### Component: I_L

$I_L = g_L ⁢ Vm - EL$

### Component: membrane

$ddtime Vm =- 1.0 Cm ⁢ I_ion_Cy + I_ion_PU1 + I_ion_PU2 + I_ion_PU3 + I_ion_PU4 + I_ion_PU5 + I_ion_PU6 + I_ion_PU7 + I_ion_PU8 + I_ion_PU9 + I_ion_PU10$$I_ion_Cy = I_CaT + I_CaExt + I_Kv1_1 + I_KERG + I_KB + I_Na + I_L$

### Component: Nerst_potentials

$ECa_Cy = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CCy$$ENa_Cy = R ⁢ T F ⁢ln⁡ NO Ni$$EK = R ⁢ T F ⁢ln⁡ KO Ki$

### Component: CCy

$ddtime CCy = JCy - lambda_S2_Cy ⁢ JS2Cy1 + lambda_S2_Cy ⁢ JS2Cy2 + lambda_S2_Cy ⁢ JS2Cy3 + lambda_S2_Cy ⁢ JS2Cy4 + lambda_S2_Cy ⁢ JS2Cy5 + lambda_S2_Cy ⁢ JS2Cy6 + lambda_S2_Cy ⁢ JS2Cy7 + lambda_S2_Cy ⁢ JS2Cy8 + lambda_S2_Cy ⁢ JS2Cy9 + lambda_S2_Cy ⁢ JS2Cy10 + delta_SCy 2.0 ⁢ I_CaT + I_CaExt$

### Component: JS2Cy

$JS2Cy1 = mu_S2Cy1 ⁢ CCy - CS21$$JS2Cy2 = mu_S2Cy2 ⁢ CCy - CS22$$JS2Cy3 = mu_S2Cy3 ⁢ CCy - CS23$$JS2Cy4 = mu_S2Cy4 ⁢ CCy - CS24$$JS2Cy5 = mu_S2Cy5 ⁢ CCy - CS25$$JS2Cy6 = mu_S2Cy6 ⁢ CCy - CS26$$JS2Cy7 = mu_S2Cy7 ⁢ CCy - CS27$$JS2Cy8 = mu_S2Cy8 ⁢ CCy - CS28$$JS2Cy9 = mu_S2Cy9 ⁢ CCy - CS29$$JS2Cy10 = mu_S2Cy10 ⁢ CCy - CS210$

### Component: JS1S2

$JS1S2_1 = mu_S1S2_1 ⁢ CS21 - CS11$$JS1S2_2 = mu_S1S2_2 ⁢ CS22 - CS12$$JS1S2_3 = mu_S1S2_3 ⁢ CS23 - CS13$$JS1S2_4 = mu_S1S2_4 ⁢ CS24 - CS14$$JS1S2_5 = mu_S1S2_5 ⁢ CS25 - CS15$$JS1S2_6 = mu_S1S2_6 ⁢ CS26 - CS16$$JS1S2_7 = mu_S1S2_7 ⁢ CS27 - CS17$$JS1S2_8 = mu_S1S2_8 ⁢ CS28 - CS18$$JS1S2_9 = mu_S1S2_9 ⁢ CS29 - CS19$$JS1S2_10 = mu_S1S2_10 ⁢ CS210 - CS110$$mu_S1S2_1 = mu_A + mu_B - mu_A ⁢ 1 - 1 n_PU - 1$$mu_S1S2_2 = mu_A + mu_B - mu_A ⁢ 2 - 1 n_PU - 1$$mu_S1S2_3 = mu_A + mu_B - mu_A ⁢ 3 - 1 n_PU - 1$$mu_S1S2_4 = mu_A + mu_B - mu_A ⁢ 4 - 1 n_PU - 1$$mu_S1S2_5 = mu_A + mu_B - mu_A ⁢ 5 - 1 n_PU - 1$$mu_S1S2_6 = mu_A + mu_B - mu_A ⁢ 6 - 1 n_PU - 1$$mu_S1S2_7 = mu_A + mu_B - mu_A ⁢ 7 - 1 n_PU - 1$$mu_S1S2_8 = mu_A + mu_B - mu_A ⁢ 8 - 1 n_PU - 1$$mu_S1S2_9 = mu_A + mu_B - mu_A ⁢ 9 - 1 n_PU - 1$$mu_S1S2_10 = mu_A + mu_B - mu_A ⁢ 10 - 1 n_PU - 1$

### Component: JCy

$JCy = mu_Cy ⁢ C_infinity - CCy$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$

### Component: PU_membrane

$I_iCa = alpha_scale ⁢ I_Ca + I_NSCC_Ca + I_PM$$I_iNa = alpha_scale ⁢ I_NSCC_Na + I_Na + I_NaP$$I_ion_PU = I_iCa + I_iNa$

### Component: I_Ca

$I_Ca = gCa ⁢ Vm - ECa_PU$$gCa = gCa_ ⁢ⅇ kCa ⁢ Vm 1.0 +ⅇ kVCa ⁢ Vm - VhCa$$ECa_PU = R ⁢ T 2.0 ⁢ F ⁢ln⁡ CO CS1$

### Component: I_NSCC_Ca

$gNSCC_Ca = gNSCC_Ca_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Ca = gNSCC_Ca ⁢ Vm - ENSCC$

### Component: I_NSCC_Na

$gNSCC_Na = gNSCC_Na_ ⁢ KNSCC hNSCC KNSCC hNSCC + CS1 hNSCC$$I_NSCC_Na = gNSCC_Na ⁢ Vm - ENSCC$

### Component: I_PM

$I_PM = gPM ⁢ CS1 2.0 KPM 2.0 + CS1 2.0$

### Component: I_Na

$I_Na = gNa ⁢ Vm - ENa_PU$$ENa_PU = R ⁢ T F ⁢ln⁡ NO NS1$

### Component: I_NaP

$I_NaP = gNaP ⁢ NS1 hNaP KNaP hNaP + NS1 hNaP ⁢ ENaP - Vm$

### Component: JSERCA

$JSERCA = VSERCA ⁢ CS1 - A2 ⁢ CER 1.0 + A4 ⁢ CS1 + A5 ⁢ CER + A6 ⁢ CS1 ⁢ CER$

### Component: JMCU

$JMCU = VMCU ⁢ CS2 2.0 KMCU 2.0 + CS2 2.0 ⁢ epsilon_INH$$epsilon_INH = KINH hINH KINH hINH + CMT hINH$

### Component: JNCX

$JNCX = VNCX ⁢ CMT CMT + KNCX$

### Component: JIPR

$ddtime H = phi3 ⁢ 1.0 - H - P ⁢ phi1 ⁢ phi2 P ⁢ phi1 + phi_1 ⁢ H$$JIPR = kIPR ⁢ P ⁢ phi1 ⁢ H P ⁢ phi1 + phi_1 4.0 ⁢ CER - CS2$$phi1 = k1 ⁢ R1 + r2 ⁢ CS2 R1 + CS2$$phi_1 = k_1 + r_2 ⁢ R3 R3 + CS2$$phi2 = k2 ⁢ R3 + r4 ⁢ CS2 R3 + CS2$$phi3 = g_phi3 ⁢ zeta 1.0 + K_phi3_act CS2 h_phi3_act ⁢ 1.0 + CS2 K_phi3_inh h_phi3_inh$$alpha_zeta = g_alpha$$beta_zeta = g_beta 1.0 + K_beta CS2 h_beta$$ddtime zeta = alpha_zeta ⁢ 1.0 - zeta - beta_zeta ⁢ zeta$

### Component: CS1

$ddtime CS1 = JS1S2 + lambda_MT_S1 ⁢ JNCX - delta_SPU alpha_scale ⁢ 2.0 ⁢ I_iCa + lambda_ER_S1 ⁢ JSERCA$$lambda_MT_S1 = gamma_MT gamma_S1$$lambda_ER_S1 = gamma_ER gamma_S1$

### Component: CS2

$ddtime CS2 = JS2Cy + lambda_ER_S2 ⁢ JIPR - lambda_S1_S2 ⁢ JS1S2 + lambda_MT_S2 ⁢ JMCU$$lambda_MT_S2 = gamma_MT gamma_S2$$lambda_ER_S2 = gamma_ER gamma_S2$$lambda_S1_S2 = gamma_S1 gamma_S2$

### Component: CER

$ddtime CER = JSERCA - JIPR$

### Component: CMT

$ddtime CMT = fm ⁢ JMCU - JNCX$$fm = 1.0 1.0 + Km ⁢ Bm Km + CMT 2.0$

### Component: NS1

$ddtime NS1 =- delta_SPU 1.0 ⁢ alpha_scale ⁢ I_iNa$

### Component: model_parameters

$alpha_scale = n_PU_base n_PU$
Source
Derived from workspace Faville, Pullan, Sanders, Koh, Lloyd, Smith, 2009 at changeset bd9ae5d20868.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: